Ligand- and Structure-Based Analysis of Deep Learning-Generated Potential α2a Adrenoceptor Agonists.
J Chem Inf Model
; 61(1): 481-492, 2021 01 25.
Article
em En
| MEDLINE
| ID: mdl-33404240
The α2a adrenoceptor is a medically relevant subtype of the G protein-coupled receptor family. Unfortunately, high-throughput techniques aimed at producing novel drug leads for this receptor have been largely unsuccessful because of the complex pharmacology of adrenergic receptors. As such, cutting-edge in silico ligand- and structure-based assessment and de novo deep learning methods are well positioned to provide new insights into protein-ligand interactions and potential active compounds. In this work, we (i) collect a dataset of α2a adrenoceptor agonists and provide it as a resource for the drug design community; (ii) use the dataset as a basis to generate candidate-active structures via deep learning; and (iii) apply computational ligand- and structure-based analysis techniques to gain new insights into α2a adrenoceptor agonists and assess the quality of the computer-generated compounds. We further describe how such assessment techniques can be applied to putative chemical probes with a case study involving proposed medetomidine-based probes.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Receptores Adrenérgicos alfa 2
/
Aprendizado Profundo
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article