Your browser doesn't support javascript.
loading
Evaluation of engineered sorbents for the sorption of mercury from contaminated bank soils: a column study.
Goñez-Rodríguez, Leroy; Johs, Alexander; Lowe, Kenneth A; Carter, Kimberly E; Löffler, Frank E; Mayes, Melanie A.
Afiliação
  • Goñez-Rodríguez L; Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA.
  • Johs A; Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
  • Lowe KA; Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA.
  • Carter KE; Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA.
  • Löffler FE; Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
  • Mayes MA; Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
Environ Sci Pollut Res Int ; 28(18): 22651-22663, 2021 May.
Article em En | MEDLINE | ID: mdl-33420931
ABSTRACT
As a global environmental pollutant, mercury (Hg) threatens our water resources and presents a substantial risk to human health. The rate and extent of immobilization of Hg2+ (hereafter, Hg) on engineered sorbents (Thiol-SAMMS®, pine biochar, SediMite™, Organoclay™ PM-199, and quartz sand as a control) was evaluated using flow-through column experiments. The effectiveness of the sorbents was based on (1) the percentage of Hg removed in relation to the total amount of Hg passing the sorbent column, and (2) the rate of Hg uptake compared to the nonreactive tracer bromide (Br-). All sorbents removed Hg to a certain extent, but none of the sorbents removed all the Hg introduced to the columns. Thiol-SAMMS showed the highest mean percentage of Hg removed (87% ± 2.9%), followed by Organoclay PM-199 (71% ± 0.4%), pine biochar (57% ± 22.3%), SediMite (61% ± 0.8%), and the control quartz sand (11% ± 5.6%). Thiol-SAMMS was the only sorbent to exhibit retardation of Hg in comparison to the conservative tracer Br-. For the remaining sorbents, Br- along with low concentrations of Hg were eluted within the first 3 pore volumes, indicating limited retardation of Hg. Overall, removal of Hg by sorbents was substantial, suggesting that sorbents might be suitable for deployment in contaminated environments. High concentrations of DOM leaching from the soil columns likely influenced the speciation of Hg and inhibited sorption to the sorbents. Incomplete removal of Hg by any sorbent suggests that additional optimization is needed to increase efficiency.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Ambientais / Mercúrio Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Ambientais / Mercúrio Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article