Your browser doesn't support javascript.
loading
Poly(ε-caprolactone)/Hydroxyapatite 3D Honeycomb Scaffolds for a Cellular Microenvironment Adapted to Maxillofacial Bone Reconstruction.
Garcia Garcia, Alejandro; Hébraud, Anne; Duval, Jean-Luc; Wittmer, Corinne R; Gaut, Ludovic; Duprez, Delphine; Egles, Christophe; Bedoui, Fahmi; Schlatter, Guy; Legallais, Cecile.
Afiliação
  • Garcia Garcia A; CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France.
  • Hébraud A; ICPEES UMR 7515, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France.
  • Duval JL; CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France.
  • Wittmer CR; ICPEES UMR 7515, Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France.
  • Gaut L; CNRS, UMR 7622, IBPS-Developmental Biology Laboratory, Sorbonne Université, 7-9 Quai Saint Bernard, 75005 Paris, France.
  • Duprez D; Inserm U1156, 7-9 Quai Saint Bernard, 75005 Paris, France.
  • Egles C; CNRS, UMR 7622, IBPS-Developmental Biology Laboratory, Sorbonne Université, 7-9 Quai Saint Bernard, 75005 Paris, France.
  • Bedoui F; Inserm U1156, 7-9 Quai Saint Bernard, 75005 Paris, France.
  • Schlatter G; CNRS, UMR 7338 Laboratory of Biomechanics and Bioengineering, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiegne, France.
  • Legallais C; Roberval Laboratory for Mechanics, Sorbonne Universités, Université de Technologie de Compiègne, Rue du Dr. Schweitzer, 60200 Compiègne, France.
ACS Biomater Sci Eng ; 4(9): 3317-3326, 2018 Sep 10.
Article em En | MEDLINE | ID: mdl-33435068
The elaboration of biomimetic materials inspired from the specific structure of native bone is one the main goal of tissue engineering approaches. To offer the most appropriate environment for bone reconstruction, we combined electrospinning and electrospraying to elaborate an innovative scaffold composed of alternating layers of polycaprolactone (PCL) and hydroxyapatite (HA). In our approach, the electrospun PCL was shaped into a honeycomb-like structure with an inner diameter of 160 µm, capable of providing bone cells with a 3D environment while ensuring the material biomechanical strength. After 5 days of culture without any differentiation factor, the murine embryonic cell line demonstrated excellent cell viability on contact with the PCL-HA structures as well as active colonization of the scaffold. The cell differentiation, as tested by RT-qPCR, revealed a 6-fold increase in the expression of the RNA of the Bglap involved in bone mineralization as compared to a classical 2D culture. This differentiation of the cells into osteoblasts was confirmed by alkaline phosphatase staining of the scaffold cultivated with the cell lineage. Later on, organotypic cultures of embryonic bone tissues showed the high capacity of the PCL-HA honeycomb structure to guide the migration of differentiated bone cells throughout the cavities and the ridge of the biomaterial, with a colonization surface twice as big as that of the control. Taken together, our results indicate that PCL-HA honeycomb structures are biomimetic supports that promotes in vitro osteocompatibility, osteoconduction, and osteoinduction and could be suitable for being used for bone reconstruction in complex situations such as the repair of maxillofacial defects.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article