Your browser doesn't support javascript.
loading
Systematic detection of brain protein-coding genes under positive selection during primate evolution and their roles in cognition.
Dumas, Guillaume; Malesys, Simon; Bourgeron, Thomas.
Afiliação
  • Dumas G; Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France.
  • Malesys S; Department of Psychiatry, Université de Montreal, CHU Sainte-Justine Hospital, Montreal H3T 1C5, Quebec, Canada.
  • Bourgeron T; Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France.
Genome Res ; 31(3): 484-496, 2021 03.
Article em En | MEDLINE | ID: mdl-33441416
The human brain differs from that of other primates, but the genetic basis of these differences remains unclear. We investigated the evolutionary pressures acting on almost all human protein-coding genes (N = 11,667; 1:1 orthologs in primates) based on their divergence from those of early hominins, such as Neanderthals, and non-human primates. We confirm that genes encoding brain-related proteins are among the most strongly conserved protein-coding genes in the human genome. Combining our evolutionary pressure metrics for the protein-coding genome with recent data sets, we found that this conservation applied to genes functionally associated with the synapse and expressed in brain structures such as the prefrontal cortex and the cerebellum. Conversely, several genes presenting signatures commonly associated with positive selection appear as causing brain diseases or conditions, such as micro/macrocephaly, Joubert syndrome, dyslexia, and autism. Among those, a number of DNA damage response genes associated with microcephaly in humans such as BRCA1, NHEJ1, TOP3A, and RNF168 show strong signs of positive selection and might have played a role in human brain size expansion during primate evolution. We also showed that cerebellum granule neurons express a set of genes also presenting signatures of positive selection and that may have contributed to the emergence of fine motor skills and social cognition in humans. This resource is available online and can be used to estimate evolutionary constraints acting on a set of genes and to explore their relative contributions to human traits.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Primatas / Encéfalo / Proteínas / Cognição / Evolução Molecular Tipo de estudo: Diagnostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Primatas / Encéfalo / Proteínas / Cognição / Evolução Molecular Tipo de estudo: Diagnostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article