Your browser doesn't support javascript.
loading
Smooth dendrite morphological neurons.
Gómez-Flores, Wilfrido; Sossa, Humberto.
Afiliação
  • Gómez-Flores W; Centro de Investigación y de Estudios Avanzados del IPN, Unidad Tamaulipas, Parque TECNOTAM, ZIP 87130, Ciudad Victoria, Tamaulipas, Mexico. Electronic address: wgomez@cinvestav.mx.
  • Sossa H; Instituto Politécnico Nacional, CIC, Av. Juan de Dios Bátiz S/N, Col. Nueva Industrial Vallejo, Gustavo A. Madero, ZIP 07738, Mexico City, Mexico; Tecnológico de Monterrey, Campus Guadalajara, Av. Gral. Ramón Corona 2514, ZIP 445138, Zapopan, Jalisco, Mexico.
Neural Netw ; 136: 40-53, 2021 Apr.
Article em En | MEDLINE | ID: mdl-33445004
A typical feature of hyperbox-based dendrite morphological neurons (DMN) is the generation of sharp and rough decision boundaries that inaccurately track the distribution shape of classes of patterns. This feature is because the minimum and maximum activation functions force the decision boundaries to match the faces of the hyperboxes. To improve the DMN response, we introduce a dendritic model that uses smooth maximum and minimum functions to soften the decision boundaries. The classification performance assessment is conducted on nine synthetic and 28 real-world datasets. Based on the experimental results, we demonstrate that the smooth activation functions improve the generalization capacity of DMN. The proposed approach is competitive with four machine learning techniques, namely, Multilayer Perceptron, Radial Basis Function Network, Support Vector Machine, and Nearest Neighbor algorithm. Besides, the computational complexity of DMN training is lower than MLP and SVM classifiers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Dendritos / Máquina de Vetores de Suporte / Aprendizado de Máquina / Neurônios Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Dendritos / Máquina de Vetores de Suporte / Aprendizado de Máquina / Neurônios Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article