In Vitro Evidence of Potential Interactions between CYP2C8 and Candesartan Acyl-ß-D-glucuronide in the Liver.
Drug Metab Dispos
; 49(4): 289-297, 2021 04.
Article
em En
| MEDLINE
| ID: mdl-33446524
Growing evidence suggests that certain glucuronides function as potent inhibitors of CYP2C8. We previously reported the possibility of drug-drug interactions between candesartan cilexetil and paclitaxel. In this study, we evaluated the effects of candesartan N2-glucuronide and candesartan acyl-ß-D-glucuronide on pathways associated with the elimination of paclitaxel, including those involving organic anion-transporting polypeptide (OATP) 1B1, OATP1B3, CYP2C8, and CYP3A4. UDP-glucuronosyltransferase (UGT) 1A10 and UGT2B7 were found to increase candesartan N2-glucuronide and candesartan acyl-ß-D-glucuronide formation in a candesartan concentration-dependent manner. Additionally, the uptake of candesartan N2-glucuronide and candesartan acyl-ß-D-glucuronide by cells stably expressing OATPs is a saturable process with K m of 5.11 and 12.1 µM for OATP1B1 and 28.8 and 15.7 µM for OATP1B3, respectively; both glucuronides exhibit moderate inhibition of OATP1B1/1B3. Moreover, the hydroxylation of paclitaxel was evaluated using recombinant CYP3A4 and CYP3A5. Results show that candesartan, candesartan N2-glucuronide, and candesartan acyl-ß-D-glucuronide inhibit the CYP2C8-mediated metabolism of paclitaxel, with candesartan acyl-ß-D-glucuronide exhibiting the strongest inhibition (IC50 is 18.9 µM for candesartan acyl-ß-D-glucuronide, 150 µM for candesartan, and 166 µM for candesartan N2-glucuronide). However, time-dependent inhibition of CYP2C8 by candesartan acyl-ß-D-glucuronide was not observed. Conversely, the IC50 values of all the compounds are comparable for CYP3A4. Taken together, these data suggest that candesartan acyl-ß-D-glucuronide is actively transported by OATPs into hepatocytes, and drug-drug interactions may occur with coadministration of candesartan and CYP2C8 substrates, including paclitaxel, as a result of the inhibition of CYP2C8 function. SIGNIFICANCE STATEMENT: This study demonstrates that the acyl glucuronidation of candesartan to form candesartan acyl-ß-D-glucuronide enhances CYP2C8 inhibition while exerting minimal effects on CYP3A4, organic anion-transporting polypeptide (OATP) 1B1, and OATP1B3. Thus, candesartan acyl-ß-D-glucuronide might represent a potential mediator of drug-drug interactions between candesartan and CYP2C8 substrates, such as paclitaxel, in clinical settings. This work adds to the growing knowledge regarding the inhibitory effects of glucuronides on CYP2C8.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Tetrazóis
/
Benzimidazóis
/
Compostos de Bifenilo
/
Microssomos Hepáticos
/
Glucuronídeos
/
Citocromo P-450 CYP2C8
Limite:
Humans
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article