Your browser doesn't support javascript.
loading
Linked-Read Whole Genome Sequencing Solves a Double DMD Gene Rearrangement.
Onore, Maria Elena; Torella, Annalaura; Musacchia, Francesco; D'Ambrosio, Paola; Zanobio, Mariateresa; Del Vecchio Blanco, Francesca; Piluso, Giulio; Nigro, Vincenzo.
Afiliação
  • Onore ME; UOSID Genetica Medica e Cardiomiologia, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
  • Torella A; UOSID Genetica Medica e Cardiomiologia, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
  • Musacchia F; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.
  • D'Ambrosio P; Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy.
  • Zanobio M; UOSID Genetica Medica e Cardiomiologia, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
  • Del Vecchio Blanco F; UOSID Genetica Medica e Cardiomiologia, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
  • Piluso G; UOSID Genetica Medica e Cardiomiologia, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
  • Nigro V; UOSID Genetica Medica e Cardiomiologia, Dipartimento di Medicina di Precisione, Università degli Studi della Campania "Luigi Vanvitelli", 80138 Napoli, Italy.
Genes (Basel) ; 12(2)2021 01 21.
Article em En | MEDLINE | ID: mdl-33494189
ABSTRACT
Next generation sequencing (NGS) has changed our approach to diagnosis of genetic disorders. Nowadays, the most comprehensive application of NGS is whole genome sequencing (WGS) that is able to detect virtually all DNA variations. However, even after accurate WGS, many genetic conditions remain unsolved. This may be due to the current NGS protocols, based on DNA fragmentation and short reads. To overcome these limitations, we applied a linked-read sequencing technology that combines single-molecule barcoding with short-read WGS. We were able to assemble haplotypes and distinguish between alleles along the genome. As an exemplary case, we studied the case of a female carrier of X-linked muscular dystrophy with an unsolved genetic status. A deletion of exons 16-29 in DMD gene was responsible for the disease in her family, but she showed a normal dosage of these exons by Multiplex Ligation-dependent Probe Amplification (MLPA) and array CGH. This situation is usually considered compatible with a "non-carrier" status. Unexpectedly, the girl also showed an increased dosage of flanking exons 1-15 and 30-34. Using linked-read WGS, we were able to distinguish between the two X chromosomes. In the first allele, we found the 16-29 deletion, while the second allele showed a 1-34 duplication in both cases, linked-read WGS correctly mapped the borders at single-nucleotide resolution. This duplication in trans apparently restored the normal dosage of exons 16-29 seen by quantitative assays. This had a dramatic impact in genetic counselling, by converting a non-carrier into a double carrier status prediction. We conclude that linked-read WGS should be considered as a valuable option to improve our understanding of unsolved genetic conditions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rearranjo Gênico / Distrofina / Distrofia Muscular de Duchenne / Sequenciamento Completo do Genoma Tipo de estudo: Guideline Limite: Child / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Rearranjo Gênico / Distrofina / Distrofia Muscular de Duchenne / Sequenciamento Completo do Genoma Tipo de estudo: Guideline Limite: Child / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article