Your browser doesn't support javascript.
loading
Comparison of DEKA Arm and Body-Powered Upper Limb Prosthesis Joint Kinematics.
Bloomer, Conor; Kontson, Kimberly L.
Afiliação
  • Bloomer C; United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Labs, Division of Biomedical Physics, Silver Spring, MD.
  • Kontson KL; United States Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Labs, Division of Biomedical Physics, Silver Spring, MD.
Arch Rehabil Res Clin Transl ; 2(3): 100057, 2020 Sep.
Article em En | MEDLINE | ID: mdl-33543084
ABSTRACT

OBJECTIVES:

To study the effects of advancements in upper-limb prosthesis technology on the user through biomechanical analyses at the joint level to quantitatively examine movement differences of individuals using an advanced upper-limb device, the DEKA Arm, and a conventional device, a body-powered Hosmer hook.

DESIGN:

Clinical measurement.

SETTING:

Laboratories at the United States Food and Drug Administration.

PARTICIPANTS:

Convenience sample of participants (N=14) with no upper limb disability or impairment.

INTERVENTIONS:

All participants were trained on either an upper limb body-powered (n=6) or DEKA Arm (n=8) bypass device. MAIN OUTCOME

MEASURES:

Participants completed the Jebsen-Taylor Hand Function Test (JHFT) and targeted Box and Blocks Test within a motion capture framework. Task completion times and joint angle trajectories for each degree of freedom of the right elbow, right shoulder, and torso were collected and analyzed for range of motion, mean angle, maximum angle, and angle path length during each task.

RESULTS:

Significant differences between devices were observed across metrics in at least one task for each degree of freedom. Completion times were significantly higher for DEKA users (eg, 30.51±19.29s vs 9.30±1.44s) for JHFT-simulated feeding. Some kinematic measures, such as angle path length, were significantly lower in DEKA users, with the greatest difference in the right elbow flexion path length during JHFT-Page Turning (0.29±0.14 units vs 0.11±0.04 units).

CONCLUSIONS:

Results from this work elucidate the effect of the device on the user's movement approach and performance, as well as emphasizing the importance of capturing movement quality into the assessment of function for advanced prosthetic technology to fully understand and evaluate potential benefits.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article