Your browser doesn't support javascript.
loading
Rapid capillary gel electrophoresis analysis of human milk oligosaccharides for food additive manufacturing in-process control.
Szigeti, Marton; Meszaros-Matwiejuk, Agnes; Molnar-Gabor, Dora; Guttman, Andras.
Afiliação
  • Szigeti M; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, 4032, Hungary.
  • Meszaros-Matwiejuk A; Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, 8200, Hungary.
  • Molnar-Gabor D; Glycom A/S, 2970, Hørsholm, Denmark.
  • Guttman A; Glycom A/S, 2970, Hørsholm, Denmark.
Anal Bioanal Chem ; 413(6): 1595-1603, 2021 Mar.
Article em En | MEDLINE | ID: mdl-33558961
Industrial production of human milk oligosaccharides (HMOs) represents a recently growing interest since they serve as key ingredients in baby formulas and are also utilized as dietary supplements for all age groups. Despite their short oligosaccharide chain lengths, HMO analysis is challenging due to extensive positional and linkage variations. Capillary gel electrophoresis primarily separates analyte molecules based on their hydrodynamic volume to charge ratios, thus, offers excellent resolution for most of such otherwise difficult-to-separate isomers. In this work, two commercially available gel compositions were evaluated on the analysis of a mixture of ten synthetic HMOs. The relevant respective separation matrices were then applied to selected analytical in-process control examples. The conventionally used carbohydrate separation matrix was applied for the in-process analysis of bacteria-mediated production of 3-fucosyllactose, lacto-N-tetraose, and lacto-N-neotetraose. The other example showed the suitability of the method for the in vivo in-process control of a shake flask and fermentation approach of 2'-fucosyllactose production. In this latter instance, borate complexation was utilized to efficiently separate the 2'- and 3-fucosylated lactose positional isomers. In all instances, the analysis of the HMOs of interest required only a couple of minutes with high resolution and excellent migration time and peak area reproducibility (average RSD 0.26% and 3.56%, respectively), features representing high importance in food additive manufacturing in-process control.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oligossacarídeos / Eletroforese Capilar / Suplementos Nutricionais / Aditivos Alimentares / Análise de Alimentos / Leite Humano Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oligossacarídeos / Eletroforese Capilar / Suplementos Nutricionais / Aditivos Alimentares / Análise de Alimentos / Leite Humano Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article