An implication of biotransformation in detoxification of mercury contamination by Morganella sp. strain IITISM23.
Environ Sci Pollut Res Int
; 28(27): 35661-35677, 2021 Jul.
Article
em En
| MEDLINE
| ID: mdl-33677667
The contamination of soil by heavy metals such as Hg is growing immensely nowadays. The drawbacks of physicochemical methods in the decontamination of polluted soils resulted in the search for an eco-friendly and cost-effective means in this regard. In this study, a potential Hg-resistant bacterial (IITISM23) strain was investigated for their removal potential of Hg, isolated from Hg-contaminated soil. IITISM23 strain was identified as Morganella sp. (MT062474.1) as it showed 99% similarity to genus Morganella of Gammaproteobacteria based on 16S rRNA gene sequencing. The toxicity experiment confirmed that the strain showed high resistance toward Hg. In low nutrient medium, EC50 (effective concentration) values were 6.8 ppm and minimum effective concentration (MIC) was 7.3 ppm, and in a nutrient-rich medium, EC50 value was 32.29 ppm and MIC value was 34.92 ppm, respectively. In in vitro conditions, IITISM23 showed the removal efficiency (81%) of Hg (II) by the volatilization method in Luria-Bertani (LB) broth. The changes in surface morphology of bacteria upon the supplementation of Hg (II) in broth media were determined by SEM-EDX studies, while the changes in functional groups were studied by FT-IR spectroscopy. The mercury reductase activity was determined by a crude extract of the bacterial strain. The optimal pH and temperature for maximum enzyme activity were 8 and 30oC, with Km of 3.5 µmol/l and Vmax of 0.88 µmol/min, respectively. Also, strain IITISM23 showed resistance toward various antibiotics and other heavy metals like cadmium, lead, arsenic, and zinc. Hence, the application of microbes can be an effective measure in the decontamination of Hg from polluted soils.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Poluentes do Solo
/
Mercúrio
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article