Your browser doesn't support javascript.
loading
A Heat and Power Pinch for Process Integration targeting in hybrid energy systems.
Wang, Bohong; Klemes, Jirí Jaromír; Gai, Limei; Varbanov, Petar Sabev; Liang, Yongtu.
Afiliação
  • Wang B; Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic. Electronic address: wang.b@fme.vutbr.cz.
  • Klemes JJ; Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic.
  • Gai L; Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic.
  • Varbanov PS; Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic.
  • Liang Y; National Engineering Laboratory for Pipeline Safety/Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum-Beijing, Fuxue Road No.18, Changping District, Beijing, 102249, China.
J Environ Manage ; 287: 112305, 2021 Jun 01.
Article em En | MEDLINE | ID: mdl-33752052
Hybrid energy systems have been widely used for residential and industrial purposes. In this system, the total energy requirement of each unit can be met with heat and electricity. Pinch Analysis becomes a widely used tool for Process Integration, and using Pinch Analysis for Heat Integration is well-established. However, for the combined heat and power system, the theory and the corresponding tool deserve some more development. This paper extended the Pinch Analysis concept and proposed a Heat and Power Pinch Analysis to target the amount of heat that should be recovered from the hybrid energy system. Heat and Power Composite Curve (HPCC) is developed to visualise the total energy and the separated heat and power (electricity) requirement of a hybrid energy system in a working time period. The amount of outsourced electricity that should be purchased, and stored electricity at the startup period, and the extra electricity generated by the system at the end of the working period can be demonstrated. A case is studied to illustrate the steps of using this tool, two scenarios are discussed, and the targets are shown.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eletricidade / Temperatura Alta Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eletricidade / Temperatura Alta Idioma: En Ano de publicação: 2021 Tipo de documento: Article