Effective Intratumoral Retention of [103 Pd]AuPd Alloy Nanoparticles Embedded in Gel-Forming Liquids Paves the Way for New Nanobrachytherapy.
Adv Healthc Mater
; 10(10): e2002009, 2021 05.
Article
em En
| MEDLINE
| ID: mdl-33763995
Local application of radioactive sources as brachytherapy is well established in oncology. This treatment is highly invasive however, due to the insertion of millimeter sized metal seeds. The authors report the development of a new concept for brachytherapy, based on gold-palladium (AuPd) alloy nanoparticles, intrinsically radiolabeled with 103 Pd. These are formulated in a carbohydrate-ester based liquid, capable of forming biodegradable gel-like implants upon injection. This allows for less invasive administration through small-gauge needles. [103 Pd]AuPd nanoparticles with sizes around 20 nm are prepared with radiolabeling efficiencies ranging from 79% to >99%. Coating with the hydrophobic polymer poly(N-isopropylacrylamide) leads to nanoparticle diameters below 40 nm. Dispersing the nanoparticles in ethanol with water insoluble carbohydrate esters gives "nanogels", a low viscosity liquid capable of solidifying upon injection into aqueous environments. Both nanoparticles and radioactivity are stably retained in the nanogel over 25 days (>99%) after formation in aqueous buffers. Animals bearing CT26 murine tumors are injected intratumorally with 25 MBq of the 103 Pd-nanogel, and display tumor growth delay and significantly increase median survival times compared with control groups. Excellent retention in the tumor of both the 103 Pd and the nanoparticle matrix itself is observed, demonstrating a potential for replacing currently used brachytherapy seeds.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Braquiterapia
/
Nanopartículas
/
Nanopartículas Metálicas
Limite:
Animals
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article