Your browser doesn't support javascript.
loading
Quenched or alive quantum dots: The leading roles of ligand adsorption and photoinduced protonation.
Hottechamps, Julie; Noblet, Thomas; Erard, Marie; Dreesen, Laurent.
Afiliação
  • Hottechamps J; GRASP-Biophotonics, CESAM, University of Liege, Institute of Physics, Allée du 6 août 17, 4000 Liège, Belgium.
  • Noblet T; GRASP-Biophotonics, CESAM, University of Liege, Institute of Physics, Allée du 6 août 17, 4000 Liège, Belgium.
  • Erard M; Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France.
  • Dreesen L; GRASP-Biophotonics, CESAM, University of Liege, Institute of Physics, Allée du 6 août 17, 4000 Liège, Belgium. Electronic address: laurent.dreesen@uliege.be.
J Colloid Interface Sci ; 594: 245-253, 2021 Jul 15.
Article em En | MEDLINE | ID: mdl-33765644
HYPOTHESIS: The fluorescence emission of water-soluble CdTe quantum dots (QDs) capped with mercaptocarboxylic acids (MCAs) is known to be pH-dependent. However, this behaviour is quite different from a study to another, so that literature suffers from a lack of coherence. Here we assume that the QD fluorescence efficiency is actually driven by the acid-base equilibrium of MCA thiol groups, and that light-excited QDs open a non-radiative relaxation path through photoinduced protonation. EXPERIMENTS: We address this issue by examining colloidal CdTe QDs with (time-resolved) fluorescence spectroscopy under various conditions of acidity and light excitation. FINDINGS: It appears that the emission of QDs is quenched below a critical pH value of 6.87, and that light excitation power strengthens this quenching. We thus demonstrate the existence of an additional photochemical process and developed a mathematical modeling accounting for all our experimental results. With only three parameters, it is possible to accurately predict the fluorescence decay of QDs over time, at any pH. Further, we also related the critical pH value of 6.87 to QD surface properties, explaining why observations may differ from a study to another and making the literature much more coherent.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article