Strategies for ensuring required service level for COVID-19 herd immunity in Indian vaccine supply chain.
Eur J Oper Res
; 304(1): 339-352, 2023 Jan 01.
Article
em En
| MEDLINE
| ID: mdl-33776195
Post COVID-19 vaccine development, nations are now getting ready to face another challenge: how to effectively distribute vaccines amongst the masses to quickly achieve herd immunity against the infection. According to some experts, herd immunity for COVID-19 can be achieved by inoculating 67% of the population. India may find it difficult to achieve this service level target, owing to several infrastructural deficiencies in its vaccine supply chain. Effect of these deficiencies is to cause frequent lead time disruptions. In this context, we develop a novel modelling approach to identify few nodes, which require additional inventory allocations (strategic inventory reserves) to ensure minimum service level (67%) under the possibility of lead time disruptions. Later, through an illustrative case study on distribution of Japanese Encephalitis vaccine, we identify conditions under which strategic inventory reserve policy cannot be practically implemented to meet service level targets. Nodes fulfilling these conditions are termed as critical nodes and must be overhauled structurally to make the implementation of strategic inventory policy practically viable again. Structural overhauling may entail installation of better cold storage facilities, purchasing more quality transport vans, improving reliability of transport network, and skills of cold storage manager by training. Ideally, conditions for identifying critical nodes for COVID-19 vaccine distribution must be derived separately by substituting COVID-19 specific parametric values in our model. In the absence of the required data for COVID-19 scenario, JE specific criteria can be used heuristically to identify critical nodes and structurally overhaul them later for efficiently achieving service level targets.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article