Your browser doesn't support javascript.
loading
Structure-Property Relationships in Bionanocomposites for Pipe Extrusion Applications.
Botta, Luigi; La Mantia, Francesco Paolo; Mistretta, Maria Chiara; Oliveri, Antonino; Arrigo, Rossella; Malucelli, Giulio.
Afiliação
  • Botta L; Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
  • La Mantia FP; INSTM, Via Giusti 9, 50121 Firenze, Italy.
  • Mistretta MC; Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
  • Oliveri A; INSTM, Via Giusti 9, 50121 Firenze, Italy.
  • Arrigo R; Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
  • Malucelli G; INSTM, Via Giusti 9, 50121 Firenze, Italy.
Polymers (Basel) ; 13(5)2021 Mar 04.
Article em En | MEDLINE | ID: mdl-33806333
ABSTRACT
In this work, bionanocomposites based on different biodegradable polymers and two types of nanofillers, namely a nanosized calcium carbonate and an organomodified nanoclay, were produced through melt extrusion, with the aim to evaluate the possible applications of these materials as a potential alternative to traditional fossil fuel-derived polyolefins, for the production of irrigation pipes. The rheological behavior of the formulated systems was thoroughly evaluated by exploiting different flow regimes, and the obtained results indicated a remarkable effect of the introduced nanofillers on the low-frequency rheological response, especially in nanoclay-based bionanocomposites. Conversely, the shear viscosity at a high shear rate was almost unaffected by the presence of both types of nanofillers, as well as the rheological response under nonisothermal elongational flow. In addition, the analysis of the mechanical properties of the formulated materials indicated that the embedded nanofillers increased the elastic modulus when compared to the unfilled counterparts, notwithstanding a slight decrease of the material ductility. Finally, the processing behavior of unfilled biopolymers and bionanocomposites was evaluated, allowing for selecting the most suitable material and thus fulfilling the processability requirements for pipe extrusion applications.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article