Your browser doesn't support javascript.
loading
Tuneable Control of Organocatalytic Activity through Host-Guest Chemistry.
Li, Guotai; Trausel, Fanny; van der Helm, Michelle P; Klemm, Benjamin; Brevé, Tobias G; van Rossum, Susan A P; Hartono, Muhamad; Gerlings, Harm H P J; Lovrak, Matija; van Esch, Jan H; Eelkema, Rienk.
Afiliação
  • Li G; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
  • Trausel F; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
  • van der Helm MP; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
  • Klemm B; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
  • Brevé TG; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
  • van Rossum SAP; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
  • Hartono M; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
  • Gerlings HHPJ; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
  • Lovrak M; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
  • van Esch JH; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
  • Eelkema R; Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
Angew Chem Int Ed Engl ; 60(25): 14022-14029, 2021 06 14.
Article em En | MEDLINE | ID: mdl-33821558
Dynamic regulation of chemical reactivity is important in many complex chemical reaction networks, such as cascade reactions and signal transduction processes. Signal responsive catalysts could play a crucial role in regulating these reaction pathways. Recently, supramolecular encapsulation was reported to regulate the activities of artificial catalysts. We present a host-guest chemistry strategy to modulate the activity of commercially available synthetic organocatalysts. The molecular container cucurbit[7]uril was successfully applied to change the activity of four different organocatalysts and one initiator, enabling up- or down-regulation of the reaction rates of four different classes of chemical reactions. In most cases CB[7] encapsulation results in catalyst inhibition, however in one case catalyst activation by binding to CB[7] was observed. The mechanism behind this unexpected behavior was explored by NMR binding studies and pKa measurements. The catalytic activity can be instantaneously switched during operation, by addition of either supramolecular host or competitive binding molecules, and the reaction rate can be predicted with a kinetic model. Overall, this signal responsive system proves a promising tool to control catalytic activity.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article