Your browser doesn't support javascript.
loading
Mycobacterial fatty acid catabolism is repressed by FdmR to sustain lipogenesis and virulence.
Dong, Wenyue; Nie, Xiaoqun; Zhu, Hong; Liu, Qingyun; Shi, Kunxiong; You, Linlin; Zhang, Yu; Fan, Hongyan; Yan, Bo; Niu, Chen; Lyu, Liang-Dong; Zhao, Guo-Ping; Yang, Chen.
Afiliação
  • Dong W; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China.
  • Nie X; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhu H; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China.
  • Liu Q; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China.
  • Shi K; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115.
  • You L; Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Sh
  • Zhang Y; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China.
  • Fan H; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Yan B; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China.
  • Niu C; Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Sh
  • Lyu LD; Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Sh
  • Zhao GP; Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Sh
  • Yang C; Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Sh
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article em En | MEDLINE | ID: mdl-33853942
ABSTRACT
Host-derived fatty acids are an important carbon source for pathogenic mycobacteria during infection. How mycobacterial cells regulate the catabolism of fatty acids to serve the pathogenicity, however, remains unknown. Here, we identified a TetR-family transcriptional factor, FdmR, as the key regulator of fatty acid catabolism in the pathogen Mycobacterium marinum by combining use of transcriptomics, chromatin immunoprecipitation followed by sequencing, dynamic 13C-based flux analysis, metabolomics, and lipidomics. An M. marinum mutant deficient in FdmR was severely attenuated in zebrafish larvae and adult zebrafish. The mutant showed defective growth but high substrate consumption on fatty acids. FdmR was identified as a long-chain acyl-coenzyme A (acyl-CoA)-responsive repressor of genes involved in fatty acid degradation and modification. We demonstrated that FdmR functions as a valve to direct the flux of exogenously derived fatty acids away from ß-oxidation toward lipid biosynthesis, thereby avoiding the overactive catabolism and accumulation of biologically toxic intermediates. Moreover, we found that FdmR suppresses degradation of long-chain acyl-CoAs endogenously synthesized through the type I fatty acid synthase. By modulating the supply of long-chain acyl-CoAs for lipogenesis, FdmR controls the abundance and chain length of virulence-associated lipids and mycolates and plays an important role in the impermeability of the cell envelope. These results reveal that despite the fact that host-derived fatty acids are used as an important carbon source, overactive catabolism of fatty acids is detrimental to mycobacterial cell growth and pathogenicity. This study thus presents FdmR as a potentially attractive target for chemotherapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mycobacterium marinum / Lipogênese / Ácidos Graxos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mycobacterium marinum / Lipogênese / Ácidos Graxos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article