Your browser doesn't support javascript.
loading
4,4'-Dichloro-diphenyl diselenide modulated oxidative stress that differently affected peripheral tissues in streptozotocin-exposed mice.
Marques, Luiza S; Zborowski, Vanessa A; Heck, Suélen O; Fulco, Bruna C W; Nogueira, Cristina W.
Afiliação
  • Marques LS; Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogens, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil.
  • Zborowski VA; Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogens, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil.
  • Heck SO; Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogens, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil.
  • Fulco BCW; Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogens, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil.
  • Nogueira CW; Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.
Can J Physiol Pharmacol ; 99(9): 943-951, 2021 Sep.
Article em En | MEDLINE | ID: mdl-33861646
ABSTRACT
Streptozotocin (STZ) is a substance used experimentally to induce a diabetes model, a metabolic disease associated with oxidative tissue damage. This study evaluated if 4-4'-dichloro-diphenyl diselenide (p-ClPhSe)2 modulates oxidative stress in peripheral tissues of diabetic mice. Male Swiss mice received a single STZ injection (i.p.) at a dose of 200 mg/kg or its vehicle and were treated with (p-ClPhSe)2 (7 days, 5 mg/kg) or metformin (200 mg/kg, twice per day). After, the mice were euthanized to collect liver, kidney, and skeletal muscle samples. In the liver, (p-ClPhSe)2 reduced thiobarbituric acid reactive substances (TBARS) and protein carbonyl levels and normalized the superoxide dismutase activity in STZ-treated mice. In the kidney, (p-ClPhSe)2 reversed the increase in the reactive species levels but not the catalase (CAT) activity reduction in STZ-treated mice. There was no evidence of oxidative damage in the skeletal muscle of STZ-treated mice, but an increase in the CAT activity and a reduction in non-protein thiol levels were found. (p-ClPhSe)2 did not reverse a decrease in hepatic and renal δ-aminolevulinic acid dehydratase activity in STZ-treated mice. The results show that the liver and kidney of STZ-treated mice were more susceptible to oxidative stress. This study reveals that (p-ClPhSe)2 modulated oxidative stress, which differently affected peripheral tissues of diabetic mice.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Organosselênicos / Estresse Oxidativo / Diabetes Mellitus Experimental Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Organosselênicos / Estresse Oxidativo / Diabetes Mellitus Experimental Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article