Your browser doesn't support javascript.
loading
Nanozyme-Activated Synergistic Amplification for Ultrasensitive Photoelectrochemical Immunoassay.
Chen, Guojuan; Qin, Ying; Jiao, Lei; Huang, Jiajia; Wu, Yu; Hu, Liuyong; Gu, Wenling; Xu, Dacheng; Zhu, Chengzhou.
Afiliação
  • Chen G; Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
  • Qin Y; School of Electronic and Information Engineering, Soochow University, Suzhou 215006, P. R. China.
  • Jiao L; Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
  • Huang J; Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
  • Wu Y; Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
  • Hu L; Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
  • Gu W; Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
  • Xu D; Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
  • Zhu C; School of Electronic and Information Engineering, Soochow University, Suzhou 215006, P. R. China.
Anal Chem ; 93(17): 6881-6888, 2021 05 04.
Article em En | MEDLINE | ID: mdl-33886279
ABSTRACT
At present, enzyme-mediated signal amplification strategies have been widely applied in photoelectrochemical (PEC) biosensing systems, while the introduction of natural enzymes onto the surface of photoelectrodes inevitably obstructs the electron transfer due to their insulating properties as proteins, leading to severe damage to photocurrent. In this work, the PdPt bimetallic nanozymes with the efficient peroxidase-like activity were used as alternatives to natural enzymes and amplified PEC biosensing signals via their efficient enzymatic reaction and remarkable enhancement in photocurrent. As a result, photoactive CdS nanorods modified with PdPt bimetallic nanozymes showed a boosted PEC performance compared with the pristine CdS nanorods due to the localized surface plasmon resonance effect and Schottky junction. On the basis of the as-prepared CdS/PdPt photoelectrode, a sensitive split-type glucose oxidase-mediated PEC immunoassay for carcinoembryonic antigen (CEA) detection was successfully constructed. Along with the sandwich immunocomplexing, the subsequently produced hydrogen peroxide (H2O2) can oxidize 4-chloro-1-naphthol into insoluble precipitates to inhibit photocurrent and simultaneously trigger the bio-etching of CdS to further restrain photocurrent signals due to the excellent peroxidase-mimicking activity of PdPt nanozymes. Owing to the synergistic signal amplification fulfilled by PdPt nanozymes, an ultrasensitive immunoassay of CEA was realized with a wider linear range from 1 to 5000 pg/mL and a low detection limit of 0.21 pg/mL, opening a new avenue for building ultrasensitive PEC biosensors with nanozymes.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Técnicas Eletroquímicas Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Técnicas Eletroquímicas Idioma: En Ano de publicação: 2021 Tipo de documento: Article