Your browser doesn't support javascript.
loading
Molecular insights into plant desiccation tolerance: transcriptomics, proteomics and targeted metabolite profiling in Craterostigma plantagineum.
Xu, Xuan; Legay, Sylvain; Sergeant, Kjell; Zorzan, Simone; Leclercq, Céline C; Charton, Sophie; Giarola, Valentino; Liu, Xun; Challabathula, Dinakar; Renaut, Jenny; Hausman, Jean-Francois; Bartels, Dorothea; Guerriero, Gea.
Afiliação
  • Xu X; GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg.
  • Legay S; GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg.
  • Sergeant K; GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg.
  • Zorzan S; GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg.
  • Leclercq CC; GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg.
  • Charton S; GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg.
  • Giarola V; Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany.
  • Liu X; Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany.
  • Challabathula D; Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany.
  • Renaut J; GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg.
  • Hausman JF; GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg.
  • Bartels D; Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, Bonn, D-53115, Germany.
  • Guerriero G; GreenTech Innovation Centre, Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, L-4362, Luxembourg.
Plant J ; 107(2): 377-398, 2021 07.
Article em En | MEDLINE | ID: mdl-33901322
The resurrection plant Craterostigma plantagineum possesses an extraordinary capacity to survive long-term desiccation. To enhance our understanding of this phenomenon, complementary transcriptome, soluble proteome and targeted metabolite profiling was carried out on leaves collected from different stages during a dehydration and rehydration cycle. A total of 7348 contigs, 611 proteins and 39 metabolites were differentially abundant across the different sampling points. Dynamic changes in transcript, protein and metabolite levels revealed a unique signature characterizing each stage. An overall low correlation between transcript and protein abundance suggests a prominent role for post-transcriptional modification in metabolic reprogramming to prepare plants for desiccation and recovery. The integrative analysis of all three data sets was performed with an emphasis on photosynthesis, photorespiration, energy metabolism and amino acid metabolism. The results revealed a set of precise changes that modulate primary metabolism to confer plasticity to metabolic pathways, thus optimizing plant performance under stress. The maintenance of cyclic electron flow and photorespiration, and the switch from C3 to crassulacean acid metabolism photosynthesis, may contribute to partially sustain photosynthesis and minimize oxidative damage during dehydration. Transcripts with a delayed translation, ATP-independent bypasses, alternative respiratory pathway and 4-aminobutyric acid shunt may all play a role in energy management, together conferring bioenergetic advantages to meet energy demands upon rehydration. This study provides a high-resolution map of the changes occurring in primary metabolism during dehydration and rehydration and enriches our understanding of the molecular mechanisms underpinning plant desiccation tolerance. The data sets provided here will ultimately inspire biotechnological strategies for drought tolerance improvement in crops.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Craterostigma Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Craterostigma Idioma: En Ano de publicação: 2021 Tipo de documento: Article