Deep Learning Estimation of 10-2 and 24-2 Visual Field Metrics Based on Thickness Maps from Macula OCT.
Ophthalmology
; 128(11): 1534-1548, 2021 11.
Article
em En
| MEDLINE
| ID: mdl-33901527
PURPOSE: To develop deep learning (DL) systems estimating visual function from macula-centered spectral-domain (SD) OCT images. DESIGN: Evaluation of a diagnostic technology. PARTICIPANTS: A total of 2408 10-2 visual field (VF) SD OCT pairs and 2999 24-2 VF SD OCT pairs collected from 645 healthy and glaucoma subjects (1222 eyes). METHODS: Deep learning models were trained on thickness maps from Spectralis macula SD OCT to estimate 10-2 and 24-2 VF mean deviation (MD) and pattern standard deviation (PSD). Individual and combined DL models were trained using thickness data from 6 layers (retinal nerve fiber layer [RNFL], ganglion cell layer [GCL], inner plexiform layer [IPL], ganglion cell-IPL [GCIPL], ganglion cell complex [GCC] and retina). Linear regression of mean layer thicknesses were used for comparison. MAIN OUTCOME MEASURES: Deep learning models were evaluated using R2 and mean absolute error (MAE) compared with 10-2 and 24-2 VF measurements. RESULTS: Combined DL models estimating 10-2 achieved R2 of 0.82 (95% confidence interval [CI], 0.68-0.89) for MD and 0.69 (95% CI, 0.55-0.81) for PSD and MAEs of 1.9 dB (95% CI, 1.6-2.4 dB) for MD and 1.5 dB (95% CI, 1.2-1.9 dB) for PSD. This was significantly better than mean thickness estimates for 10-2 MD (0.61 [95% CI, 0.47-0.71] and 3.0 dB [95% CI, 2.5-3.5 dB]) and 10-2 PSD (0.46 [95% CI, 0.31-0.60] and 2.3 dB [95% CI, 1.8-2.7 dB]). Combined DL models estimating 24-2 achieved R2 of 0.79 (95% CI, 0.72-0.84) for MD and 0.68 (95% CI, 0.53-0.79) for PSD and MAEs of 2.1 dB (95% CI, 1.8-2.5 dB) for MD and 1.5 dB (95% CI, 1.3-1.9 dB) for PSD. This was significantly better than mean thickness estimates for 24-2 MD (0.41 [95% CI, 0.26-0.57] and 3.4 dB [95% CI, 2.7-4.5 dB]) and 24-2 PSD (0.38 [95% CI, 0.20-0.57] and 2.4 dB [95% CI, 2.0-2.8 dB]). The GCIPL (R2 = 0.79) and GCC (R2 = 0.75) had the highest performance estimating 10-2 and 24-2 MD, respectively. CONCLUSIONS: Deep learning models improved estimates of functional loss from SD OCT imaging. Accurate estimates can help clinicians to individualize VF testing to patients.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Campos Visuais
/
Glaucoma
/
Tomografia de Coerência Óptica
/
Aprendizado Profundo
/
Pressão Intraocular
/
Macula Lutea
Tipo de estudo:
Observational_studies
/
Prevalence_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Aged
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article