Your browser doesn't support javascript.
loading
Transcriptome profiling reveals response genes for downy mildew resistance in cucumber.
Gao, Xinbin; Guo, Pei; Wang, Zhiyuan; Chen, Chunhua; Ren, Zhonghai.
Afiliação
  • Gao X; State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultur
  • Guo P; State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultur
  • Wang Z; State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultur
  • Chen C; State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultur
  • Ren Z; State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, College of Horticultural Science and Engineering, Shandong Agricultur
Planta ; 253(5): 112, 2021 Apr 29.
Article em En | MEDLINE | ID: mdl-33914134
MAIN CONCLUSION: We discovered a potential defense pathway of cucumber to downy mildew. The signaling that activates the pathways of ROS and lignin accumulation may play an important role in the defense response. Many resistance genes were identified by transcriptome analysis. Downy mildew (DM), caused by Pseudoperonospora cubensis, is one of the most destructive diseases and causes severe yield losses of cucumber. However, the genes and pathways involved in regulating DM resistance were still poorly understood. In our study, we observed that the highly sensitive inbred line 53 (IL53) exhibited more severe disease symptoms than the highly resistant inbred line 51 (IL51) under P. cubensis infection. Furthermore, lignin, limiting the germination and extension of P. cubensis, and H2O2, as a signaling molecule during the resistant process, were both shown to increase, indicating that the signaling that activates these pathways might be responsible for the resistance divergence between IL51 and IL53. Transcriptome analysis, using the resistant and susceptible pools in F2 populations with IL51 and IL53 as parents, showed that a series of differentially expressed genes was involved in multiple functions of defense response: pathogen-associated molecular pattern recognition, signal transduction, reactive oxygen species and lignin accumulation, and transcription regulators. Combining physiological data with transcriptomes, we predicted a potential molecular mechanism of cucumber resistance to DM. Our research provided a foundation for further studies on the mechanism of cucumber resistance to DM.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cucumis sativus / Peronospora Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cucumis sativus / Peronospora Idioma: En Ano de publicação: 2021 Tipo de documento: Article