Your browser doesn't support javascript.
loading
Design, synthesis, and molecular simulation studies of N-phenyltetrahydroquinazolinones as protoporphyrinogen IX oxidase inhibitors.
Liang, Lu; Yu, Shuyi; Li, Qian; Wang, Xia; Wang, Dawei; Xi, Zhen.
Afiliação
  • Liang L; State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China.
  • Yu S; State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China.
  • Li Q; State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China.
  • Wang X; State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China.
  • Wang D; State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China.
  • Xi Z; State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China. Electronic address: zhenxi@n
Bioorg Med Chem ; 39: 116165, 2021 06 01.
Article em En | MEDLINE | ID: mdl-33915477
ABSTRACT
Discovering new protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitors is a promising direction for agrochemical research. Herein, we reported the discovery and in silico structure-guided optimization of N-phenyltetrahydroquinazolinones 1 and 2 as new PPO inhibitors. Most of the obtained compounds 1 and 2 exhibited significantly enhanced Nicotiana tabacum PPO (NtPPO) inhibitory potency than that of flumioxazin. Promisingly, 1-(tert-butoxy)-1-oxopropan-2-yl 2-chloro-4-fluoro-5-(4-oxo-5,6,7,8-tetrahydroquinazolin-3(4H)-yl)benzoate, 2o, with a Ki value of 4 nM, showed ten folds more enhanced NtPPO-inhibiting potency than flumioxazin. Additionally, compounds 2b and 2i showed a broad spectrum of broadleaf weeds control at 37.5-150 g ai/ha, and selective for wheat at 150 g ai/ha in the post-emergent application. The molecular simulation studies revealed the vital basis between N-phenyltetrahydroquinazolinones and NtPPO. The present work indicated that the N-phenyltetrahydroquinazolinone motif might be a potential scaffold for herbicide discovery.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desenho de Fármacos / Inibidores Enzimáticos / Protoporfirinogênio Oxidase / Quinazolinonas Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desenho de Fármacos / Inibidores Enzimáticos / Protoporfirinogênio Oxidase / Quinazolinonas Idioma: En Ano de publicação: 2021 Tipo de documento: Article