Your browser doesn't support javascript.
loading
Congenital Microcoria: Clinical Features and Molecular Genetics.
Angée, Clémentine; Nedelec, Brigitte; Erjavec, Elisa; Rozet, Jean-Michel; Fares Taie, Lucas.
Afiliação
  • Angée C; Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
  • Nedelec B; Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
  • Erjavec E; Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
  • Rozet JM; Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
  • Fares Taie L; Laboratory of Genetics in Ophthalmology (LGO), INSERM UMR1163, Institute of Genetic Diseases, Imagine and Paris Descartes University, 75015 Paris, France.
Genes (Basel) ; 12(5)2021 04 22.
Article em En | MEDLINE | ID: mdl-33922078
ABSTRACT
Iris integrity is required to regulate both the amount of light reaching the retina and intraocular pressure (IOP), with elevated IOP being a major risk factor for glaucoma. Congenital microcoria (MCOR) is an extremely rare, autosomal dominant disease affecting iris development and hindering both of these functions. It is characterized by absent or underdeveloped dilator muscle fibers and immaturity of the iridocorneal angle-where the aqueous humor is drained-which play a central role in IOP regulation. The dilator muscle anomaly is manifested in pinhole pupils (<2 mm) and thin transilluminable irises, causing both hemeralopia and photoaversion. Axial myopia and juvenile open-angle glaucoma are very frequent (80% and 30% of all cases, respectively). It has been suggested that the immaturity of the chamber angle contributes to glaucoma, and myopia has been ascribed to photoaversion and elevated IOP. Though possible, these mechanisms are insufficient. The disease has been tied to chromosome 13q32.1 structural variations. In addition to compromising iris development, modification of the 13q32.1 architecture could alter signaling pathways for axial ocular length and IOP regulation. Here, we summarize the clinical, histological, and molecular features of this disease, and we discuss the possible etiology of associated anomalies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Distúrbios Pupilares Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Distúrbios Pupilares Tipo de estudo: Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article