Your browser doesn't support javascript.
loading
Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide.
Sivaraman, Ganesh; Gallington, Leighanne; Krishnamoorthy, Anand Narayanan; Stan, Marius; Csányi, Gábor; Vázquez-Mayagoitia, Álvaro; Benmore, Chris J.
Afiliação
  • Sivaraman G; Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439, USA.
  • Gallington L; X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
  • Krishnamoorthy AN; Helmholtz-Institute Munster: Ionics in Energy Storage (IEK-12), Forschungszentrum Julich GmbH, Corrensstrasse 46, 48149 Munster, Germany.
  • Stan M; Applied Materials Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
  • Csányi G; Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom.
  • Vázquez-Mayagoitia Á; Computational Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
  • Benmore CJ; X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
Phys Rev Lett ; 126(15): 156002, 2021 Apr 16.
Article em En | MEDLINE | ID: mdl-33929252
Understanding the structure and properties of refractory oxides is critical for high temperature applications. In this work, a combined experimental and simulation approach uses an automated closed loop via an active learner, which is initialized by x-ray and neutron diffraction measurements, and sequentially improves a machine-learning model until the experimentally predetermined phase space is covered. A multiphase potential is generated for a canonical example of the archetypal refractory oxide, HfO_{2}, by drawing a minimum number of training configurations from room temperature to the liquid state at ∼2900 °C. The method significantly reduces model development time and human effort.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article