Your browser doesn't support javascript.
loading
Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties.
Alsenafi, Abdulaziz; Bég, O Anwar; Ferdows, M; Bég, Tasveer A; Kadir, A.
Afiliação
  • Alsenafi A; Department of Mathematics, Kuwait University, Kuwait City, Kuwait.
  • Bég OA; Department of Mechanical/Aeronautical Engineering, Salford University, Manchester, M54WT, UK.
  • Ferdows M; Research Group of Fluid Flow Modeling and Simulation, Department of Applied Mathematics, University of Dhaka, Dhaka, Bangladesh. ferdows@du.ac.bd.
  • Bég TA; Renewable Energy and Computational Multi-Physics, Israfil House, Dickenson Rd., Manchester, M13, UK.
  • Kadir A; Department of Mechanical/Aeronautical Engineering, Salford University, Manchester, M54WT, UK.
Sci Rep ; 11(1): 9877, 2021 05 10.
Article em En | MEDLINE | ID: mdl-33972577
ABSTRACT
A mathematical model is developed for stagnation point flow toward a stretching or shrinking sheet of liquid nano-biofilm containing spherical nano-particles and bioconvecting gyrotactic micro-organisms. Variable transport properties of the liquid (viscosity, thermal conductivity, nano-particle species diffusivity) and micro-organisms (species diffusivity) are considered. Buongiorno's two-component nanoscale model is deployed and spherical nanoparticles in a dilute nanofluid considered. Using a similarity transformation, the nonlinear systems of partial differential equations is converted into nonlinear ordinary differential equations. These resulting equations are solved numerically using a central space finite difference method in the CodeBlocks Fortran platform. Graphical plots for the distribution of reduced skin friction coefficient, reduced Nusselt number, reduced Sherwood number and the reduced local density of the motile microorganisms as well as the velocity, temperature, nanoparticle volume fraction and the density of motile microorganisms are presented for the influence of wall velocity power-law index (m), viscosity parameter [Formula see text], thermal conductivity parameter (c4), nano-particle mass diffusivity (c6), micro-organism species diffusivity (c8), thermophoresis parameter [Formula see text], Brownian motion parameter [Formula see text], Lewis number [Formula see text], bioconvection Schmidt number [Formula see text], bioconvection constant (σ) and bioconvection Péclet number [Formula see text]. Validation of the solutions via comparison related to previous simpler models is included. Further verification of the general model is conducted with the Adomian decomposition method (ADM). Extensive interpretation of the physics is included. Skin friction is elevated with viscosity parameter ([Formula see text] whereas it is suppressed with greater Lewis number and thermophoresis parameter. Temperatures are elevated with increasing thermal conductivity parameter ([Formula see text] whereas Nusselt numbers are reduced. Nano-particle volume fraction (concentration) is enhanced with increasing nano-particle mass diffusivity parameter ([Formula see text]) whereas it is markedly reduced with greater Lewis number (Le) and Brownian motion parameter (Nb). With increasing stretching/shrinking velocity power-law exponent ([Formula see text] skin friction is decreased whereas Nusselt number and Sherwood number are both elevated. Motile microorganism density is boosted strongly with increasing micro-organism diffusivity parameter ([Formula see text]) and Brownian motion parameter (Nb) but reduced considerably with greater bioconvection Schmidt number (Sc) and bioconvection Péclet number (Pe). The simulations find applications in deposition processes in nano-bio-coating manufacturing processes.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article