Your browser doesn't support javascript.
loading
The potential role of m6A RNA methylation in diabetic retinopathy.
Kumari, Nidhi; Karmakar, Aditi; Ahamad Khan, Md Maqsood; Ganesan, Senthil Kumar.
Afiliação
  • Kumari N; Department of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; CSIR-IICB Translational Research Unit of Excellence (TRUE), Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
  • Karmakar A; Department of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; CSIR-IICB Translational Research Unit of Excellence (TRUE), Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
  • Ahamad Khan MM; Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, India.
  • Ganesan SK; Department of Structural Biology & Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; CSIR-IICB Translational Research Unit of Excellence (TRUE), Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address: skumar@iicb.res.i
Exp Eye Res ; 208: 108616, 2021 07.
Article em En | MEDLINE | ID: mdl-33979630
ABSTRACT
Diabetic retinopathy (DR), a major microvascular complication of diabetes, affects most diabetic individuals and has become the leading cause of vision loss. Metabolic memory associated with diabetes retains the risk of disease occurrence even after the termination of glycemic insult. Further, various limitations associated with its current diagnostic and treatment strategies like unavailability of early diagnostic and treatment methods, variation in treatment response from patient to patient, and cost-effectiveness have driven the need to find alternative solutions. Post-transcriptional epigenetic modification of RNA mainly, N6-methyladenosine (m6A), is an emerging concept in the scientific community. It has an indispensable effect in various physiological and pathological conditions. m6A mediates its effect through the various reader, writer, and eraser proteins. Recent studies have shown the impact of m6A RNA modification on various disease conditions, including diabetes, but its role in diabetic retinopathy is still unclear. However, change in m6A levels has been observed in various prime aggravators of DR pathogenesis, such as inflammation, oxidative stress, and angiogenesis. Further, various non-coding RNAs like microRNA, lncRNA, and circRNA are also associated with DR, and m6A has been shown to affect all these non-coding RNAs. This review is concerned with the possible mechanisms through which alteration in m6A modification of RNA can participate in the DR progression and pathogenesis and its expected role in metabolic memory phenomena.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Epigênese Genética / Retinopatia Diabética / Metiltransferases Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Epigênese Genética / Retinopatia Diabética / Metiltransferases Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article