Your browser doesn't support javascript.
loading
Biomimetic Dendrimer-Peptide Conjugates for Early Multi-Target Therapy of Alzheimer's Disease by Inflammatory Microenvironment Modulation.
Liu, Peixin; Zhang, Tongyu; Chen, Qinjun; Li, Chao; Chu, Yongchao; Guo, Qin; Zhang, Yiwen; Zhou, Wenxi; Chen, Hongyi; Zhou, Zheng; Wang, Yu; Zhao, Zhenhao; Luo, Yifan; Li, Xuwen; Song, Haolin; Su, Boyu; Li, Chufeng; Sun, Tao; Jiang, Chen.
Afiliação
  • Liu P; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Zhang T; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Chen Q; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Li C; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Chu Y; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Guo Q; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Zhang Y; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Zhou W; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Chen H; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Zhou Z; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Wang Y; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Zhao Z; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Luo Y; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Li X; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Song H; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Su B; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Li C; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Sun T; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
  • Jiang C; Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China.
Adv Mater ; 33(26): e2100746, 2021 Jul.
Article em En | MEDLINE | ID: mdl-33998706
ABSTRACT
Current therapeutic strategies for Alzheimer's disease (AD) treatments mainly focus on ß-amyloid (Aß) targeting. However, such therapeutic strategies have limited clinical outcomes due to the chronic and irreversible impairment of the nervous system in the late stage of AD. Recently, inflammatory responses, manifested in oxidative stress and glial cell activation, have been reported as hallmarks in the early stages of AD. Based on the crosstalk between inflammatory response and brain cells, a reactive oxygen species (ROS)-responsive dendrimer-peptide conjugate (APBP) is devised to target the AD microenvironment and inhibit inflammatory responses at an early stage. With the modification of the targeting peptide, this nanoconjugate can efficiently deliver peptides to the infected regions and restore the antioxidant ability of neurons by activating the nuclear factor (erythroid-derived 2)-like 2 signaling pathway. Moreover, this multi-target strategy exhibits a synergistic function of ROS scavenging, promoting Aß phagocytosis, and normalizing the glial cell phenotype. As a result, the nanoconjugate can reduce ROS level, decrease Aß burden, alleviate glial cell activation, and eventually enhance cognitive functions in APPswe/PSEN1dE9 model mice. These results indicate that APBP can be a promising candidate for the multi-target treatment of AD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article