Your browser doesn't support javascript.
loading
Calcium as a reliable marker for the quantitative assessment of endoplasmic reticulum stress in live cells.
Lebeau, Paul F; Platko, Khrystyna; Byun, Jae Hyun; Austin, Richard C.
Afiliação
  • Lebeau PF; Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada.
  • Platko K; Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada.
  • Byun JH; Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada.
  • Austin RC; Department of Medicine, Division of Nephrology, McMaster University, The Research Institute of St Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada. Electronic address: austinr@taari.ca.
J Biol Chem ; 296: 100779, 2021.
Article em En | MEDLINE | ID: mdl-34000299
Calcium (Ca2+) is an essential mineral of endoplasmic reticulum (ER) luminal biochemistry because of the Ca2+ dependence of ER-resident chaperones charged with folding de novo proteins that transit this cellular compartment. ER Ca2+ depletion reduces the ability of chaperones to properly fold the proteins entering the ER, thus leading to an accumulation of misfolded proteins and the onset of a state known as ER stress. However, not all conditions that cause ER stress do so in a manner dependent on ER Ca2+ depletion. Agents such as tunicamycin inhibit the glycosylation of de novo polypeptides, a key step in the maturation process of newly synthesized proteins. Despite this established effect of tunicamycin, our understanding of how such conditions modulate ER Ca2+ levels is still limited. In the present study, we report that a variety of ER stress-inducing agents that have not been known to directly alter ER Ca2+ homeostasis can also cause a marked reduction in ER Ca2+ levels. Consistent with these observations, protecting against ER stress using small chemical chaperones, such as 4-phenylbutyrate and tauroursodeoxycholic acid, also attenuated ER Ca2+ depletion caused by these agents. We also describe a novel high-throughput and low-cost assay for the rapid quantification of ER stress using ER Ca2+ levels as a surrogate marker. This report builds on our understanding of ER Ca2+ levels in the context of ER stress and also provides the scientific community with a new, reliable tool to study this important cellular process in vitro.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cálcio / Estresse do Retículo Endoplasmático Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cálcio / Estresse do Retículo Endoplasmático Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article