Your browser doesn't support javascript.
loading
Crystal Field Effect and Electric Field Screening in Multilayer Graphene with and without Twist.
Tepliakov, Nikita V; Wu, QuanSheng; Yazyev, Oleg V.
Afiliação
  • Tepliakov NV; Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
  • Wu Q; Information Optical Technologies Center, ITMO University, Saint Petersburg 197101, Russia.
  • Yazyev OV; Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Nano Lett ; 21(11): 4636-4642, 2021 Jun 09.
Article em En | MEDLINE | ID: mdl-34033719
We address the intrinsic polarization and screening of an external electric field in a broad range of ordered and twisted configurations of multilayer graphene, using an ab initio approach combining density functional theory and the Wannier function formalism. We show that multilayer graphene is intrinsically polarized due to the crystal field effect, an effect that is often neglected in tight-binding models of twisted bilayer graphene and similar systems. This intrinsic polarization of the order of up to a few tens of millielectronvolts has different out-of-plane alignments in ordered and twisted graphene multilayers, while the in-plane potential modulation is found to be much stronger in twisted systems. We further investigate the dielectric permittivity ε in same multilayer graphene configurations at different electric field strengths. Our findings establish a deep insight into intrinsic and extrinsic polarization in graphene multilayers and provide parameters necessary for building accurate models of these systems.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article