Your browser doesn't support javascript.
loading
Oxidative potential of aerosolized metalworking fluids in occupational settings.
Sauvain, Jean-Jacques; Suarez, Guillaume; Hopf, Nancy B; Batsungnoen, Kiattisak; Charriere, Nicole; Andre, Fanny; Levilly, Ronan; Wild, Pascal.
Afiliação
  • Sauvain JJ; Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), Epalinges-Lausanne, Switzerland. Electronic address: jean-jacques.sauvain@unisante.ch.
  • Suarez G; Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), Epalinges-Lausanne, Switzerland. Electronic address: guillaume.suarez@unisante.ch.
  • Hopf NB; Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), Epalinges-Lausanne, Switzerland. Electronic address: nancy.hopf@unisante.ch.
  • Batsungnoen K; Institute of Public Health, Suranaree University of Technology, Nakhon Ratchasima, Thailand. Electronic address: kiattisak@sut.ac.th.
  • Charriere N; Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), Epalinges-Lausanne, Switzerland. Electronic address: nicole.charriere@unisante.ch.
  • Andre F; Department of Toxicology and Biometrology, National Research and Safety Institute (INRS), Rue Du Morvan, CS 60027, 54519, Vandoeuvre Cedex, France. Electronic address: fanny.andre@inrs.fr.
  • Levilly R; Department Process Engineering, National Research and Safety Institute (INRS), Rue Du Morvan, CS 60027, 54519, Vandoeuvre Cedex, France. Electronic address: ronan.levilly@inrs.fr.
  • Wild P; Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), Epalinges-Lausanne, Switzerland; Division of Research Management, National Research and Safety Institute (INRS), Rue Du Morvan, CS 60027, 54519, Vandoeuvre Cedex, France. Electronic address: pa
Int J Hyg Environ Health ; 235: 113775, 2021 06.
Article em En | MEDLINE | ID: mdl-34058621
ABSTRACT
The oxidative potential (OP) measures the ability of pollutants to oxidize a chemical/biological probe. Such assays are starting to gain acceptance as integrative exposure metrics associated with inflammatory-based pathologies. Diseases such as asthma, rhinitis or cancers are reported for workers exposed to oil mist, which are aerosols of metal working fluids (MWF) emitted during the machining of metals. Measuring oil mist in the air is challenging, and exposures are often quantified as the mass fraction, which does not account for exposures to the gaseous fraction. Consequently, exposures are underestimated and furthermore, the hazardous property of oil mist is not assessed. We postulate that it is more relevant to assess occupational exposures to the hazardous fractions of oil mist by measuring OP than by simply measuring mass. We characterized exposures to straight and water-based MWF among workers in the French and Swiss mechanical industry using standard methods for oil mist and the ferrous orange xylenol assay for OP assessment (OPFOX). Considering the particulate fraction, the water-based MWF presented the greatest OPFOX. The OP was associated with organic carbon and iron content. The gaseous fraction of the oil mist presented also an important redox activity, particularly in workshops where straight oils were used. The hexanal concentration was associated with this OPFOX. The OPFOX measurement is thus integrative of multiple parameters, and bring complementary information when assessing MWF exposures. Our results highlight that OPFOX account for MWF type and could be an interesting parameter to characterize such exposure.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Exposição Ocupacional / Poluentes Ocupacionais do Ar Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Exposição Ocupacional / Poluentes Ocupacionais do Ar Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article