Your browser doesn't support javascript.
loading
G protein γ subunit modulates expression of plant-biomass-degrading enzyme genes and mycelial-development-related genes in Penicillium oxalicum.
Pang, Xiao-Ming; Tian, Di; Zhang, Ting; Liao, Lu-Sheng; Li, Cheng-Xi; Luo, Xue-Mei; Feng, Jia-Xun; Zhao, Shuai.
Afiliação
  • Pang XM; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
  • Tian D; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
  • Zhang T; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
  • Liao LS; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
  • Li CX; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
  • Luo XM; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
  • Feng JX; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China.
  • Zhao S; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, People's Republic of China. shuaizhao
Appl Microbiol Biotechnol ; 105(11): 4675-4691, 2021 Jun.
Article em En | MEDLINE | ID: mdl-34076714
Heterotrimeric-G-protein-mediated signaling pathways modulate the expression of the essential genes in many fundamental cellular processes in fungi at the transcription level. However, these processes remain unclear in Penicillium oxalicum. In this study, we generated knockout and knockout-complemented strains of gng-1 (POX07071) encoding the Gγ protein and found that GNG-1 modulated the expression of genes encoding plant-biomass-degrading enzymes (PBDEs) and sporulation-related activators. Interestingly, GNG-1 affected expression of the cxrB that encodes a known transcription factor required for the expression of major cellulase and xylanase genes. Constitutive overexpression of cxrB in ∆gng-1 circumvented the dependence of PBDE production on GNG-1. Further evidence indicated that CxrB indirectly regulated the transcription levels of key amylase genes by controlling the expression of the regulatory gene amyR. These data extended the diversity of Gγ protein functions and provided new insight into the signal transduction and regulation of PBDE gene expression in filamentous fungi. KEY POINTS: • GNG-1 modulates the expression of PBDE genes and sporulation-related genes. • GNG-1 controls expression of the key regulatory gene cxrB. • Overexpression of cxrB circumvents dependence of PBDE production on GNG-1.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Penicillium / Subunidades gama da Proteína de Ligação ao GTP Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Penicillium / Subunidades gama da Proteína de Ligação ao GTP Idioma: En Ano de publicação: 2021 Tipo de documento: Article