Your browser doesn't support javascript.
loading
The influence of the post-pulmonary septum and submersion on the pulmonary mechanics of Trachemys scripta (Cryptodira: Emydidae).
de Souza, Ray Brasil Bueno; Klein, Wilfried.
Afiliação
  • de Souza RBB; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil.
  • Klein W; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil.
J Exp Biol ; 224(12)2021 06 15.
Article em En | MEDLINE | ID: mdl-34096569
The respiratory system of chelonians needs to function within a mostly solid carapace, with ventilation depending on movements of the flanks. When submerged, inspiration has to work against hydrostatic pressure. We examined breathing mechanics in Trachemys scripta while underwater. Additionally, as the respiratory system of T. scripta possesses a well-developed post-pulmonary septum (PPS), we investigated its role by analyzing the breathing mechanics of lungs with and without their PPS attached. Static compliance was significantly increased in submerged animals and in animals with and without their PPS, while removal of the PPS did not result in a significantly different static compliance. Dynamic compliance was significantly affected by changes in volume and frequency in every treatment, with submergence significantly decreasing dynamic compliance. The presence of the PPS significantly increased dynamic compliance. Submersion did not significantly alter work per ventilation, but caused minute work of breathing to be much greater at any frequency and ventilation level analyzed. Lungs with or without their PPS did not show significantly different work per ventilation when compared with the intact animal. Our results demonstrate that submersion results in significantly altered breathing mechanics, increasing minute work of breathing greatly. The PPS was shown to maintain a constant volume within the animal's body cavity, wherein the lungs can be ventilated more easily, highlighting the importance of this coelomic subdivision in the chelonian body cavity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tartarugas / Imersão Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tartarugas / Imersão Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article