Multilevel resistive random access memory achieved by MoO3/Hf/MoO3stack and its application in tunable high-pass filter.
Nanotechnology
; 32(38)2021 Jun 29.
Article
em En
| MEDLINE
| ID: mdl-34116525
In this work, the multilevel resistive random access memories (RRAMs) have been achieved by using the structure of Pt/MoO3/Hf/MoO3/Pt with four stable resistance states. The devices show good retention property of each state (>104s) and large memory window (>104). The simulation and experimental study reveal that the resistive switching mechanism is ascribed to combination of the conductive filament in the stack of MoO3/Hf next to the top electrode and redox reaction at the interface of Hf/MoO3next to bottom electrode. The fitting results of current-voltage characteristics under low sweep voltage indicate that the conduction of HRSs is dominated by the Poole-Frenkel emission and that of LRS is governed by the Ohmic conduction. Based on the RRAM, the tunable high-pass filter (HPF) with configurable filtering characteristics has been realized. The gain-frequency characteristics of the programmable HPF show that the filter has high resolution and wide programming range, demonstrating the viability of the multilevel RRAMs for future spiking neural network and shrinking the programmable filters with low power consumption.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Clinical_trials
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article