Your browser doesn't support javascript.
loading
LncRNA MIR17HG promotes colorectal cancer liver metastasis by mediating a glycolysis-associated positive feedback circuit.
Zhao, Senlin; Guan, Bingjie; Mi, Yushuai; Shi, Debing; Wei, Ping; Gu, Yanzi; Cai, Sanjun; Xu, Ye; Li, Xinxiang; Yan, Dongwang; Huang, Mingzhu; Li, Dawei.
Afiliação
  • Zhao S; Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
  • Guan B; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
  • Mi Y; Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
  • Shi D; Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
  • Wei P; Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
  • Gu Y; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
  • Cai S; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
  • Xu Y; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.
  • Li X; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
  • Yan D; Department of Biobank, Fudan University Shanghai Cancer Center, Shanghai, China.
  • Huang M; Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
  • Li D; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
Oncogene ; 40(28): 4709-4724, 2021 07.
Article em En | MEDLINE | ID: mdl-34145399
Glycolysis plays a crucial role in reprogramming the metastatic tumor microenvironment. A series of lncRNAs have been identified to function as oncogenic molecules by regulating glycolysis. However, the roles of glycolysis-related lncRNAs in regulating colorectal cancer liver metastasis (CRLM) remain poorly understood. In the present study, the expression of the glycolysis-related lncRNA MIR17HG gradually increased from adjacent normal to CRC to the paired liver metastatic tissues, and high MIR17HG expression predicted poor survival, especially in patients with liver metastasis. Functionally, MIR17HG promoted glycolysis in CRC cells and enhanced their invasion and liver metastasis in vitro and in vivo. Mechanistically, MIR17HG functioned as a ceRNA to regulate HK1 expression by sponging miR-138-5p, resulting in glycolysis in CRC cells and leading to their invasion and liver metastasis. More interestingly, lactate accumulated via glycolysis activated the p38/Elk-1 signaling pathway to promote the transcriptional expression of MIR17HG in CRC cells, forming a positive feedback loop, which eventually resulted in persistent glycolysis and the invasion and liver metastasis of CRC cells. In conclusion, the present study indicates that the lactate-responsive lncRNA MIR17HG, acting as a ceRNA, promotes CRLM through a glycolysis-mediated positive feedback circuit and might be a novel biomarker and therapeutic target for CRLM.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Hepáticas Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Hepáticas Tipo de estudo: Risk_factors_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article