Your browser doesn't support javascript.
loading
Enhancement of the photocurrents injected in gapped graphene by the orthogonally polarized two-color laser field.
Opt Express ; 29(11): 17387-17397, 2021 May 24.
Article em En | MEDLINE | ID: mdl-34154283
We theoretically investigate the photocurrents injected in gapped graphene by the orthogonally polarized two-color laser field. Depending on the relative phase, the photocurrents can be coherently controlled by deforming the electron trajectory in the reciprocal space. Under the same field strength, the peak photocurrent in the orthogonally polarized two-color field is about 20 times larger than that for linearly polarized light, and about 3.6 times for elliptically polarized light. The enhancement of the photocurrent can be attributed to an obvious asymmetric distribution of the real population in the reciprocal space, which is sensitive to the waveform of the laser field and related to the quantum interference between the electron trajectories. Our work provides a noncontact method to effectively enhance the injected current in graphene.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article