Your browser doesn't support javascript.
loading
Disrupted osteocyte connectivity and pericellular fluid flow in bone with aging and defective TGF-ß signaling.
Schurman, Charles A; Verbruggen, Stefaan W; Alliston, Tamara.
Afiliação
  • Schurman CA; Department of Orthopaedic Surgery, University of California, San Francisco, CA 94143.
  • Verbruggen SW; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143.
  • Alliston T; Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom, E1 4NS.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article em En | MEDLINE | ID: mdl-34161267
Skeletal fragility in the elderly does not simply result from a loss of bone mass. However, the mechanisms underlying the concurrent decline in bone mass, quality, and mechanosensitivity with age remain unclear. The important role of osteocytes in these processes and the age-related degeneration of the intricate lacunocanalicular network (LCN) in which osteocytes reside point to a primary role for osteocytes in bone aging. Since LCN complexity severely limits experimental dissection of these mechanisms in vivo, we used two in silico approaches to test the hypothesis that LCN degeneration, due to aging or an osteocyte-intrinsic defect in transforming growth factor beta (TGF-ß) signaling (TßRIIocy-/-), is sufficient to compromise essential osteocyte responsibilities of mass transport and exposure to mechanical stimuli. Using reconstructed confocal images of bone with fluorescently labeled osteocytes, we found that osteocytes from aged and TßRIIocy-/- mice had 33 to 45% fewer, and more tortuous, canaliculi. Connectomic network analysis revealed that diminished canalicular density is sufficient to impair diffusion even with intact osteocyte numbers and overall LCN architecture. Computational fluid dynamics predicts that the corresponding drop in shear stress experienced by aged or TßRIIocy-/- osteocytes is highly sensitive to canalicular surface area but not tortuosity. Simulated expansion of the osteocyte pericellular space to mimic osteocyte perilacunar/canalicular remodeling restored predicted shear stress for aged osteocytes to young levels. Overall, these models show how loss of LCN volume through LCN pruning may lead to impaired fluid dynamics and osteocyte exposure to mechanostimulation. Furthermore, osteocytes emerge as targets of age-related therapeutic efforts to restore bone health and function.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteócitos / Osso e Ossos / Envelhecimento / Fator de Crescimento Transformador beta / Hidrodinâmica Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteócitos / Osso e Ossos / Envelhecimento / Fator de Crescimento Transformador beta / Hidrodinâmica Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article