Your browser doesn't support javascript.
loading
Secretome Analysis of Arabidopsis-Trichoderma atroviride Interaction Unveils New Roles for the Plant Glutamate:Glyoxylate Aminotransferase GGAT1 in Plant Growth Induced by the Fungus and Resistance against Botrytis cinerea.
González-López, María Del Carmen; Jijón-Moreno, Saúl; Dautt-Castro, Mitzuko; Ovando-Vázquez, Cesaré; Ziv, Tamar; Horwitz, Benjamin A; Casas-Flores, Sergio.
Afiliação
  • González-López MDC; Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, IPICYT, Camino a la Presa San José No. 2055. Col. Lomas 4ª. Section, San Luis Potosí C.P. 78216, Mexico.
  • Jijón-Moreno S; Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, IPICYT, Camino a la Presa San José No. 2055. Col. Lomas 4ª. Section, San Luis Potosí C.P. 78216, Mexico.
  • Dautt-Castro M; Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, IPICYT, Camino a la Presa San José No. 2055. Col. Lomas 4ª. Section, San Luis Potosí C.P. 78216, Mexico.
  • Ovando-Vázquez C; Laboratorio de Genómica Funcional y Comparativa, División de Biología Molecular, IPICYT, Camino a la Presa San José No. 2055. Col. Lomas 4ª. Section, San Luis Potosí C.P. 78216, Mexico.
  • Ziv T; Centro Nacional de Supercómputo, IPICYT, Camino a la Presa San José No. 2055. Col. Lomas 4ª. Section, San Luis Potosí C.P. 78216, Mexico.
  • Horwitz BA; Smoler Protein Center, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
  • Casas-Flores S; Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article em En | MEDLINE | ID: mdl-34202732
ABSTRACT
The establishment of plant-fungus mutualistic interaction requires bidirectional molecular crosstalk. Therefore, the analysis of the interacting organisms secretomes would help to understand how such relationships are established. Here, a gel-free shotgun proteomics approach was used to identify the secreted proteins of the plant Arabidopsis thaliana and the mutualistic fungus Trichoderma atroviride during their interaction. A total of 126 proteins of Arabidopsis and 1027 of T. atroviride were identified. Among them, 118 and 780 were differentially modulated, respectively. Bioinformatic analysis unveiled that both organisms' secretomes were enriched with enzymes. In T. atroviride, glycosidases, aspartic endopeptidases, and dehydrogenases increased in response to Arabidopsis. Additionally, amidases, protein-serine/threonine kinases, and hydro-lyases showed decreased levels. Furthermore, peroxidases, cysteine endopeptidases, and enzymes related to the catabolism of secondary metabolites increased in the plant secretome. In contrast, pathogenesis-related proteins and protease inhibitors decreased in response to the fungus. Notably, the glutamateglyoxylate aminotransferase GGAT1 was secreted by Arabidopsis during its interaction with T. atroviride. Our study showed that GGAT1 is partially required for plant growth stimulation and on the induction of the plant systemic resistance by T. atroviride. Additionally, GGAT1 seems to participate in the negative regulation of the plant systemic resistance against B. cinerea through a mechanism involving H2O2 production.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Plantas / Trichoderma / Arabidopsis / Botrytis / Interações Hospedeiro-Patógeno / Metabolômica / Resistência à Doença Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Plantas / Trichoderma / Arabidopsis / Botrytis / Interações Hospedeiro-Patógeno / Metabolômica / Resistência à Doença Idioma: En Ano de publicação: 2021 Tipo de documento: Article