Your browser doesn't support javascript.
loading
Characteristics and functions of glyceraldehyde 3-phosphate dehydrogenase S-nitrosylation during controlled aging of elm and Arabidopsis seeds.
Zeng, MeiYan; He, YuQi; Gao, Xue; Wang, Yu; Deng, ShiMing; Ye, TianTian; Wang, XiaoFeng; Xue, Hua.
Afiliação
  • Zeng M; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083, China.
  • He Y; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083, China.
  • Gao X; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083, China.
  • Wang Y; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083, China.
  • Deng S; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083, China.
  • Ye T; College of Forestry and Horticulture, Hubei Minzu University, Enshi, China.
  • Wang X; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083, China.
  • Xue H; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, 35 Tsinghua East Road, Beijing, 100083, China.
J Exp Bot ; 72(20): 7020-7034, 2021 10 26.
Article em En | MEDLINE | ID: mdl-34244712
ABSTRACT
Seed aging is the gradual decline in seed vigor, during which programmed cell death (PCD) occurs. The functions of nitric oxide (NO) are exerted through protein S-nitrosylation, a reversible post-translational modification. During seed aging, more than 80 proteins are S-nitrosylated, but the particular role of individual proteins is unknown. Here, we showed that the S-nitrosylation level of glyceraldehyde 3-phosphate dehydrogenase (UpGAPDH) in elm (Ulmus pumila L.) seeds increased after controlled deterioration treatment. UpGAPDH was S-nitrosylated at Cys154 during S-nitrosoglutathione (GSNO) treatment, and its oligomerization was triggered both in vitro and in elm seeds. Interestingly, UpGAPDH interacted with the mitochondrial voltage-dependent anion channel in an S-nitrosylation-dependent way. Some UpGAPDH-green fluorescent protein in Arabidopsis protoplasts co-localized with mitochondria during the GSNO treatment, while the S-nitrosylation-defective UpGAPDH C154S-GFP protein did not. Seeds of oxUpGAPDH lines showed cell death and lost seed vigor rapidly during controlled deterioration treatment-triggered seed aging, while those overexpressing S-nitrosylation-defective UpGAPDH-Cys154 did not. Our results suggest that S-nitrosylation of UpGAPDH may accelerate cell death and seed deterioration during controlled deterioration treatment. These results provide new insights into the effects of UpGAPDH S-nitrosylation on protein interactions and seed aging.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis Idioma: En Ano de publicação: 2021 Tipo de documento: Article