Your browser doesn't support javascript.
loading
Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis.
Edgar, Laurienne; Akbar, Naveed; Braithwaite, Adam T; Krausgruber, Thomas; Gallart-Ayala, Héctor; Bailey, Jade; Corbin, Alastair L; Khoyratty, Tariq E; Chai, Joshua T; Alkhalil, Mohammad; Rendeiro, André F; Ziberna, Klemen; Arya, Ritu; Cahill, Thomas J; Bock, Christoph; Laurencikiene, Jurga; Crabtree, Mark J; Lemieux, Madeleine E; Riksen, Niels P; Netea, Mihai G; Wheelock, Craig E; Channon, Keith M; Rydén, Mikael; Udalova, Irina A; Carnicer, Ricardo; Choudhury, Robin P.
Afiliação
  • Edgar L; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.).
  • Akbar N; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.).
  • Braithwaite AT; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.).
  • Krausgruber T; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.).
  • Gallart-Ayala H; Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.G.-A., C.E.W.).
  • Bailey J; Department of Respiratory Medicine and Allergy (H.G.-A., C.E.W.), Karolinska University Hospital, Stockholm, Sweden.
  • Corbin AL; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.).
  • Khoyratty TE; The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.).
  • Chai JT; The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.).
  • Alkhalil M; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.).
  • Rendeiro AF; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.).
  • Ziberna K; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.).
  • Arya R; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.).
  • Cahill TJ; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.).
  • Bock C; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.).
  • Laurencikiene J; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.).
  • Crabtree MJ; Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (C.B.).
  • Lemieux ME; Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden.
  • Riksen NP; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.).
  • Netea MG; Bioinfo, Plantagenet, ON, Canada (M.E.L.).
  • Wheelock CE; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.).
  • Channon KM; Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.).
  • Rydén M; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany (M.G.N.).
  • Udalova IA; Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.G.-A., C.E.W.).
  • Carnicer R; Department of Respiratory Medicine and Allergy (H.G.-A., C.E.W.), Karolinska University Hospital, Stockholm, Sweden.
  • Choudhury RP; Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.).
Circulation ; 144(12): 961-982, 2021 09 21.
Article em En | MEDLINE | ID: mdl-34255973
ABSTRACT

BACKGROUND:

Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics.

METHODS:

Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection.

RESULTS:

In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype.

CONCLUSIONS:

Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Leucócitos Mononucleares / Diabetes Mellitus Experimental / Aterosclerose / Hiperglicemia / Imunidade Celular / Macrófagos Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Leucócitos Mononucleares / Diabetes Mellitus Experimental / Aterosclerose / Hiperglicemia / Imunidade Celular / Macrófagos Limite: Animals / Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article