Tunable fluidic lens with a dynamic high-order aberration control.
Appl Opt
; 60(18): 5302-5311, 2021 Jun 20.
Article
em En
| MEDLINE
| ID: mdl-34263767
Fluidic lenses based on electrowetting actuation are attractive for their wide focal tuning range, yet are limited by optical aberrations, either intrinsic to the lenses themselves or due to the optical imaging systems in which they are employed. However, the ability to control the meniscus shape that forms the lens refractive surface with a high degree of spatial accuracy will allow correction of and compensation for a wide range of these aberrations. We demonstrate here for what we believe, to the best of our knowledge, is the first time a tunable optofluidic lens controlled by 32 azimuthally placed electrodes for which most aberrations up to the fourth radial Zernike order may be corrected. Using both wavefront sensing and sensorless wavefront estimation techniques, it is shown that focal length tunability with a significant reduction in imaging aberrations and the ability to compensate for externally induced aberrations may be achieved using a single component.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2021
Tipo de documento:
Article