Your browser doesn't support javascript.
loading
The DME demethylase regulates sporophyte gene expression, cell proliferation, differentiation, and meristem resurrection.
Kim, Seohyun; Park, Jin-Sup; Lee, Jaehoon; Lee, Kiseok Keith; Park, Ok-Sun; Choi, Hee-Seung; Seo, Pil Joon; Cho, Hyung-Taeg; Frost, Jennifer M; Fischer, Robert L; Choi, Yeonhee.
Afiliação
  • Kim S; Department of Biological Sciences, Seoul National University, Seoul 08826, Korea.
  • Park JS; Department of Biological Sciences, Seoul National University, Seoul 08826, Korea.
  • Lee J; Department of Biological Sciences, Seoul National University, Seoul 08826, Korea.
  • Lee KK; Department of Biological Sciences, Seoul National University, Seoul 08826, Korea.
  • Park OS; Department of Chemistry, Seoul National University, Seoul 08826, Korea.
  • Choi HS; Department of Biological Sciences, Seoul National University, Seoul 08826, Korea.
  • Seo PJ; Department of Chemistry, Seoul National University, Seoul 08826, Korea.
  • Cho HT; Department of Biological Sciences, Seoul National University, Seoul 08826, Korea.
  • Frost JM; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720.
  • Fischer RL; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 rfischer@berkeley.edu yhc@snu.ac.kr.
  • Choi Y; Department of Biological Sciences, Seoul National University, Seoul 08826, Korea; rfischer@berkeley.edu yhc@snu.ac.kr.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article em En | MEDLINE | ID: mdl-34266952
The flowering plant life cycle consists of alternating haploid (gametophyte) and diploid (sporophyte) generations, where the sporophytic generation begins with fertilization of haploid gametes. In Arabidopsis, genome-wide DNA demethylation is required for normal development, catalyzed by the DEMETER (DME) DNA demethylase in the gamete companion cells of male and female gametophytes. In the sporophyte, postembryonic growth and development are largely dependent on the activity of numerous stem cell niches, or meristems. Analyzing Arabidopsis plants homozygous for a loss-of-function dme-2 allele, we show that DME influences many aspects of sporophytic growth and development. dme-2 mutants exhibited delayed seed germination, variable root hair growth, aberrant cellular proliferation and differentiation followed by enhanced de novo shoot formation, dysregulation of root quiescence and stomatal precursor cells, and inflorescence meristem (IM) resurrection. We also show that sporophytic DME activity exerts a profound effect on the transcriptome of developing Arabidopsis plants, including discrete groups of regulatory genes that are misregulated in dme-2 mutant tissues, allowing us to potentially link phenotypes to changes in specific gene expression pathways. These results show that DME plays a key role in sporophytic development and suggest that DME-mediated active DNA demethylation may be involved in the maintenance of stem cell activities during the sporophytic life cycle in Arabidopsis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transativadores / Arabidopsis / Meristema / Regulação da Expressão Gênica de Plantas / Proteínas de Arabidopsis / Células Germinativas Vegetais / N-Glicosil Hidrolases Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transativadores / Arabidopsis / Meristema / Regulação da Expressão Gênica de Plantas / Proteínas de Arabidopsis / Células Germinativas Vegetais / N-Glicosil Hidrolases Idioma: En Ano de publicação: 2021 Tipo de documento: Article