Your browser doesn't support javascript.
loading
Highly Luminescent Metal-Free Perovskite Single Crystal for Biocompatible X-Ray Detector to Attain Highest Sensitivity.
Song, Xin; Li, Qian; Han, Jiang; Ma, Chuang; Xu, Zhuo; Li, Haojin; Wang, Peijun; Yang, Zhou; Cui, Qingyue; Gao, Lili; Quan, Zewei; Liu, Shengzhong Frank; Zhao, Kui.
Afiliação
  • Song X; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal Un
  • Li Q; Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
  • Han J; Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
  • Ma C; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal Un
  • Xu Z; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal Un
  • Li H; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal Un
  • Wang P; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal Un
  • Yang Z; Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
  • Cui Q; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal Un
  • Gao L; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal Un
  • Quan Z; Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China.
  • Liu SF; Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal Un
  • Zhao K; Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
Adv Mater ; 33(36): e2102190, 2021 Sep.
Article em En | MEDLINE | ID: mdl-34309079
ABSTRACT
Solution-processed metal-based halide perovskites have taken a dominant position for perovskite optoelectronics including light emission and X-ray detection; however, the toxicity of the included heavy metals severely restricts their applications for wearable, lightweight, and transient optoelectronic devices. Here, the authors describe investigations of large (4 × 6 × 2 mm3 ) 3D metal-free perovskite MDABCO-NH4 I3 (MDBACO = methyl-N'-diazabicyclo[2.2.2]octonium) single crystal and its charge recombination and extraction behavior for light emission and X-ray detection. Unlike conventional 3D metal-based perovskites, this lightweight and biocompatible perovskite large crystal is processed from aqueous solution at room temperature, and can achieve both an extremely long carrier lifetime up to ≈1.03 µs and the formation of self-trapped excited states for luminescence. These features contribute to a photoluminescence quantum yield (PLQY) as high as ≈53% at room temperature and an X-ray sensitivity up to 1997 ± 80 µC Gy cm-2 at 50 V bias (highest among all metal-free detectors). The ability to tune the perovskite band gap by modulating the structure under high pressure is also demonstrated, which opens up applications for the crystal as colored emitters. These attributes make it a molecular alternative to metal-based perovskites for biocompatible and transient optoelectronics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxidos / Titânio / Materiais Biocompatíveis / Compostos de Cálcio / Substâncias Luminescentes Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxidos / Titânio / Materiais Biocompatíveis / Compostos de Cálcio / Substâncias Luminescentes Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article