Your browser doesn't support javascript.
loading
Linear-in temperature resistivity from an isotropic Planckian scattering rate.
Grissonnanche, Gaël; Fang, Yawen; Legros, Anaëlle; Verret, Simon; Laliberté, Francis; Collignon, Clément; Zhou, Jianshi; Graf, David; Goddard, Paul A; Taillefer, Louis; Ramshaw, B J.
Afiliação
  • Grissonnanche G; Département de physique, Institut quantique, RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada.
  • Fang Y; Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
  • Legros A; Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
  • Verret S; Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA.
  • Laliberté F; Département de physique, Institut quantique, RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada.
  • Collignon C; SPEC, CEA, CNRS-UMR 3680, Université Paris-Saclay, Gif-sur-Yvette, France.
  • Zhou J; Département de physique, Institut quantique, RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada.
  • Graf D; Département de physique, Institut quantique, RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada.
  • Goddard PA; Département de physique, Institut quantique, RQMP, Université de Sherbrooke, Sherbrooke, Québec, Canada.
  • Taillefer L; Materials Science and Engineering Program, Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA.
  • Ramshaw BJ; National High Magnetic Field Laboratory, Tallahassee, FL, USA.
Nature ; 595(7869): 667-672, 2021 07.
Article em En | MEDLINE | ID: mdl-34321673
ABSTRACT
A variety of 'strange metals' exhibit resistivity that decreases linearly with temperature as the temperature decreases to zero1-3, in contrast to conventional metals where resistivity decreases quadratically with temperature. This linear-in-temperature resistivity has been attributed to charge carriers scattering at a rate given by h/τ = αkBT, where α is a constant of order unity, h is the Planck constant and kB is the Boltzmann constant. This simple relationship between the scattering rate and temperature is observed across a wide variety of materials, suggesting a fundamental upper limit on scattering-the 'Planckian limit'4,5-but little is known about the underlying origins of this limit. Here we report a measurement of the angle-dependent magnetoresistance of La1.6-xNd0.4SrxCuO4-a hole-doped cuprate that shows linear-in-temperature resistivity down to the lowest measured temperatures6. The angle-dependent magnetoresistance shows a well defined Fermi surface that agrees quantitatively with angle-resolved photoemission spectroscopy measurements7 and reveals a linear-in-temperature scattering rate that saturates at the Planckian limit, namely α = 1.2 ± 0.4. Remarkably, we find that this Planckian scattering rate is isotropic, that is, it is independent of direction, in contrast to expectations from 'hotspot' models8,9. Our findings suggest that linear-in-temperature resistivity in strange metals emerges from a momentum-independent inelastic scattering rate that reaches the Planckian limit.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article