Your browser doesn't support javascript.
loading
Adaptive current-flow models of ECT: Explaining individual static impedance, dynamic impedance, and brain current density.
Unal, Gozde; Swami, Jaiti K; Canela, Carliza; Cohen, Samantha L; Khadka, Niranjan; FallahRad, Mohamad; Short, Baron; Argyelan, Miklos; Sackeim, Harold A; Bikson, Marom.
Afiliação
  • Unal G; Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA. Electronic address: gunal000@citymail.cuny.edu.
  • Swami JK; Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA.
  • Canela C; Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA.
  • Cohen SL; Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
  • Khadka N; Department of Psychiatry, Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, MA, USA.
  • FallahRad M; Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA.
  • Short B; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
  • Argyelan M; Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore- Long Island Jewish Health System, Manhasset, NY, 11030, USA.
  • Sackeim HA; Department of Psychiatry and Radiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA.
  • Bikson M; Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA. Electronic address: bikson@ccny.cuny.edu.
Brain Stimul ; 14(5): 1154-1168, 2021.
Article em En | MEDLINE | ID: mdl-34332156
ABSTRACT

BACKGROUND:

Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes.

OBJECTIVE:

However, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. To this end, we develop a computational framework based on diverse clinical data sets.

METHODS:

We developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These "adaptive" models simulate ECT both during therapeutic stimulation using high current (∼1 A) and when dynamic impedance is measured, as well as prior to stimulation when low current (∼1 mA) is used to measure static impedance. We modeled two scalp layers a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS¯), and a deep scalp layer with a subject-specific fixed conductivity (σDS).

RESULTS:

We demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models.

CONCLUSIONS:

Our predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES).
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eletroconvulsoterapia / Estimulação Transcraniana por Corrente Contínua Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eletroconvulsoterapia / Estimulação Transcraniana por Corrente Contínua Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article