Your browser doesn't support javascript.
loading
Neural evolution structure generation: High entropy alloys.
Tetsassi Feugmo, Conrard Giresse; Ryczko, Kevin; Anand, Abu; Singh, Chandra Veer; Tamblyn, Isaac.
Afiliação
  • Tetsassi Feugmo CG; National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada.
  • Ryczko K; Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
  • Anand A; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada.
  • Singh CV; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada.
  • Tamblyn I; National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada.
J Chem Phys ; 155(4): 044102, 2021 Jul 28.
Article em En | MEDLINE | ID: mdl-34340376
We propose a neural evolution structure (NES) generation methodology combining artificial neural networks and evolutionary algorithms to generate high entropy alloy structures. Our inverse design approach is based on pair distribution functions and atomic properties and allows one to train a model on smaller unit cells and then generate a larger cell. With a speed-up factor of ∼1000 with respect to the special quasi-random structures (SQSs), the NESs dramatically reduce computational costs and time, making possible the generation of very large structures (over 40 000 atoms) in few hours. Additionally, unlike the SQSs, the same model can be used to generate multiple structures with the same fractional composition.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article