Your browser doesn't support javascript.
loading
Technology-Enabled Care and Artificial Intelligence in Kidney Transplantation.
Schwantes, Issac R; Axelrod, David A.
Afiliação
  • Schwantes IR; Department of Surgery, Oregon Health & Science University, Portland, OR USA.
  • Axelrod DA; Organ Transplant Center, University of Iowa, 200 Hawkins Dr, Iowa City, LA 52240 USA.
Curr Transplant Rep ; 8(3): 235-240, 2021.
Article em En | MEDLINE | ID: mdl-34341714
Purpose of Review: Artificial intelligence (AI), machine learning, and technology-enabled remote patient care have evolved rapidly and have now been incorporated into many aspects of medical care. Transplantation is fortunate to have large data sets upon which machine learning algorithms can be constructed. AI are now available to improve pretransplant management, donor selection, and post-operative management of transplant patients. Recent Findings: Changes in patient and donor characteristics warrant new approaches to listing and organ acceptance practices. Machine learning has been employed to optimize donor selection to identify patients likely to benefit from transplantation of higher risk organs, increasing organ discard and reducing waitlist mortality. These models have greater precisions and predictive ability than currently employed metrics including the Kidney Donor Profile Index and the expected posttransplant survival models. After transplant, AI tools have been developed to optimize immunosuppression management, track patients adherence, and assess graft survival. Summary: AI and technology-enabled management tools are now available throughout the transplant journey. Unfortunately, those are frequently not available at the point of decision (patient listing, organ acceptance, posttransplant clinic), limiting utilization. Incorporation of these tools into the EMR, the Donor Net® organ offer system, and mobile devices is vital to ensure widespread adoption.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2021 Tipo de documento: Article