Your browser doesn't support javascript.
loading
Human Placental Transcriptome Reveals Critical Alterations in Inflammation and Energy Metabolism with Fetal Sex Differences in Spontaneous Preterm Birth.
Lien, Yu-Chin; Zhang, Zhe; Cheng, Yi; Polyak, Erzsebet; Sillers, Laura; Falk, Marni J; Ischiropoulos, Harry; Parry, Samuel; Simmons, Rebecca A.
Afiliação
  • Lien YC; Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Zhang Z; Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
  • Cheng Y; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
  • Polyak E; Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
  • Sillers L; Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
  • Falk MJ; Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
  • Ischiropoulos H; Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
  • Parry S; Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
  • Simmons RA; Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article em En | MEDLINE | ID: mdl-34360662
ABSTRACT
A well-functioning placenta is crucial for normal gestation and regulates the nutrient, gas, and waste exchanges between the maternal and fetal circulations and is an important endocrine organ producing hormones that regulate both the maternal and fetal physiologies during pregnancy. Placental insufficiency is implicated in spontaneous preterm birth (SPTB). We proposed that deficits in the capacity of the placenta to maintain bioenergetic and metabolic stability during pregnancy may ultimately result in SPTB. To explore our hypothesis, we performed a RNA-seq study in male and female placentas from women with SPTB (<36 weeks gestation) compared to normal pregnancies (≥38 weeks gestation) to assess the alterations in the gene expression profiles. We focused exclusively on Black women (cases and controls), who are at the highest risk of SPTB. Six hundred and seventy differentially expressed genes were identified in male SPTB placentas. Among them, 313 and 357 transcripts were increased and decreased, respectively. In contrast, only 61 differentially expressed genes were identified in female SPTB placenta. The ingenuity pathway analysis showed alterations in the genes and canonical pathways critical for regulating inflammation, oxidative stress, detoxification, mitochondrial function, energy metabolism, and the extracellular matrix. Many upstream regulators and master regulators important for nutrient-sensing and metabolism were also altered in SPTB placentas, including the PI3K complex, TGFB1/SMADs, SMARCA4, TP63, CDKN2A, BRCA1, and NFAT. The transcriptome was integrated with published human placental metabolome to assess the interactions of altered genes and metabolites. Collectively, significant and biologically relevant alterations in the transcriptome were identified in SPTB placentas with fetal sex disparities. Altered energy metabolism, mitochondrial function, inflammation, and detoxification may underly the mechanisms of placental dysfunction in SPTB.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Placenta / Doenças Placentárias / Nascimento Prematuro / Metabolismo Energético / Transcriptoma / Inflamação Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male / Newborn / Pregnancy Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Placenta / Doenças Placentárias / Nascimento Prematuro / Metabolismo Energético / Transcriptoma / Inflamação Tipo de estudo: Prognostic_studies Limite: Adult / Female / Humans / Male / Newborn / Pregnancy Idioma: En Ano de publicação: 2021 Tipo de documento: Article