Your browser doesn't support javascript.
loading
Sondheimer oscillations as a probe of non-ohmic flow in WP2 crystals.
van Delft, Maarten R; Wang, Yaxian; Putzke, Carsten; Oswald, Jacopo; Varnavides, Georgios; Garcia, Christina A C; Guo, Chunyu; Schmid, Heinz; Süss, Vicky; Borrmann, Horst; Diaz, Jonas; Sun, Yan; Felser, Claudia; Gotsmann, Bernd; Narang, Prineha; Moll, Philip J W.
Afiliação
  • van Delft MR; Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. maarten.vandelft@epfl.ch.
  • Wang Y; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Putzke C; Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Oswald J; IBM Research Europe - Zurich, Rüschlikon, Switzerland.
  • Varnavides G; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Garcia CAC; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Guo C; Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Schmid H; IBM Research Europe - Zurich, Rüschlikon, Switzerland.
  • Süss V; Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
  • Borrmann H; Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
  • Diaz J; Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Sun Y; Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
  • Felser C; Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
  • Gotsmann B; IBM Research Europe - Zurich, Rüschlikon, Switzerland.
  • Narang P; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. prineha@seas.harvard.edu.
  • Moll PJW; Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. philip.moll@epfl.ch.
Nat Commun ; 12(1): 4799, 2021 Aug 10.
Article em En | MEDLINE | ID: mdl-34376659
As conductors in electronic applications shrink, microscopic conduction processes lead to strong deviations from Ohm's law. Depending on the length scales of momentum conserving (lMC) and relaxing (lMR) electron scattering, and the device size (d), current flows may shift from ohmic to ballistic to hydrodynamic regimes. So far, an in situ methodology to obtain these parameters within a micro/nanodevice is critically lacking. In this context, we exploit Sondheimer oscillations, semi-classical magnetoresistance oscillations due to helical electronic motion, as a method to obtain lMR even when lMR ≫ d. We extract lMR from the Sondheimer amplitude in WP2, at temperatures up to T ~ 40 K, a range most relevant for hydrodynamic transport phenomena. Our data on µm-sized devices are in excellent agreement with experimental reports of the bulk lMR and confirm that WP2 can be microfabricated without degradation. These results conclusively establish Sondheimer oscillations as a quantitative probe of lMR in micro-devices.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article