Your browser doesn't support javascript.
loading
Optimal flickering light stimulation for entraining gamma waves in the human brain.
Lee, Kanghee; Park, Yeseung; Suh, Seung Wan; Kim, Sang-Su; Kim, Do-Won; Lee, Jaeho; Park, Jaehyeok; Yoo, Seunghyup; Kim, Ki Woong.
Afiliação
  • Lee K; Department of Neuropsychiatry, Seoul National University, College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
  • Park Y; Department of Neuropsychiatry, Seoul National University, College of Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
  • Suh SW; Department of Brain and Cognitive Science, Seoul National University, Seoul, Republic of Korea.
  • Kim SS; Department of Psychiatry, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea.
  • Kim DW; Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea.
  • Lee J; Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea.
  • Park J; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
  • Yoo S; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
  • Kim KW; School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Sci Rep ; 11(1): 16206, 2021 08 10.
Article em En | MEDLINE | ID: mdl-34376723
ABSTRACT
Although light flickering at 40 Hz reduced Alzheimer's disease (AD) pathologies in mice by entraining gamma waves, it failed to reduce cerebral amyloid burden in a study on six patients with AD or mild cognitive impairment. We investigated the optimal color, intensity, and frequency of the flickering light stimulus for entraining gamma waves in young adults. We compared the event-related synchronization (ERS) values of entrained gamma waves between four different light colors (white, red, green, and blue) in the first experiment and four different luminance intensities in the second experiment. In both experiments, we compared the ERS values of entrained gamma waves between 10 different flickering frequencies from 32 to 50 Hz. We also examined the severity of six adverse effects in both experiments. We compared the propagation of gamma waves in the visual cortex to other brain regions between different luminance intensities and flickering frequencies. We found that red light entrained gamma waves most effectively, followed by white light. Lights of higher luminance intensities (700 and 400 cd/m2) entrained stronger gamma waves than those of lower luminance intensities (100 and 10 cd/m2). Lights flickering at 34-38 Hz entrained stronger and more widely spread beyond the visual cortex than those flickering at 40-50 Hz. Light of 700 cd/m2 resulted in more moderate-to-severe adverse effects than those of other luminance intensities. In humans, 400 cd/m2 white light flickering at 34-38 Hz was most optimal for gamma entrainment.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Visão Ocular / Córtex Visual / Encéfalo / Raios gama / Luz Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Visão Ocular / Córtex Visual / Encéfalo / Raios gama / Luz Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2021 Tipo de documento: Article